Adipokines and epithelial-mesenchymal transition (EMT) in cancer.

Mol Cell Biochem

Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.

Published: November 2023

Obesity is a significant risk factor for cancer development. Within the tumor microenvironment, adipocytes interact with cancer cells, immune cells, fibroblasts and endothelial cells, and orchestrate several signaling pathways by secreting bioactive molecules, including adipokines. Adipokines or adipocytokines are produced predominantly by adipocytes and function as autocrine, paracrine and endocrine mediators. Adipokines can exert pro- and anti-inflammatory functions, and they play a pivotal role in the state of chronic low-grade inflammation that characterizes obesity. Epithelial-mesenchymal transition (EMT), a complex biological process whereby epithelial cells acquire the invasive, migratory mesenchymal phenotype is well-known to be implicated in cancer progression and metastasis. Emerging evidence suggests that there is a link between adipokines and EMT. This may contribute to the correlation that has been documented between obesity and cancer progression. This review summarizes the existing body of evidence supporting an association between the process of EMT in cancer and the adipokines leptin, adiponectin, resistin, visfatin/NAMPT, lipocalin-2/NGAL, as well as other newly discovered adipokines including chemerin, nesfatin-1/nucleobindin-2, AZGP1, SFRP5 and FABP4.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-023-04670-xDOI Listing

Publication Analysis

Top Keywords

epithelial-mesenchymal transition
8
transition emt
8
emt cancer
8
cancer progression
8
adipokines
7
cancer
6
adipokines epithelial-mesenchymal
4
emt
4
cancer obesity
4
obesity risk
4

Similar Publications

Targeting oncogene-induced cellular plasticity for tumor therapy.

Adv Biotechnol (Singap)

July 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.

Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.

View Article and Find Full Text PDF

Rational Design, Synthesis, and Biological Evaluation of Novel c-Met Degraders for Lung Cancer Therapy.

J Med Chem

January 2025

Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610064 Chengdu, China.

Cellular-mesenchymal epithelial transition factor (c-Met) is an attractive target for treating multiple cancers. Despite plentiful c-Met inhibitors have been developed, some issues, including the acquired drug resistance to c-Met inhibitors, have emerged to hamper their application in clinical treatment. Degradation of c-Met offers an opportunity to solve these issues.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices.

View Article and Find Full Text PDF

With the continuous advancements in modern medicine, significant progress has been made in the treatment of lung cancer. Current standard treatments, such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have notably improved patient survival. However, the adverse effects associated with these therapies limit their use and impact the overall treatment process.

View Article and Find Full Text PDF

Novel factors of cisplatin resistance in epithelial ovarian tumours.

Adv Med Sci

January 2025

Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic. Electronic address:

Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!