MRI image synthesis for fluid-attenuated inversion recovery and diffusion-weighted images with deep learning.

Phys Eng Sci Med

Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.

Published: March 2023

This study aims to synthesize fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted images (DWI) with a deep conditional adversarial network from T1- and T2-weighted magnetic resonance imaging (MRI) images. A total of 1980 images of 102 patients were split into two datasets: 1470 (68 patients) in a training set and 510 (34 patients) in a test set. The prediction framework was based on a convolutional neural network with a generator and discriminator. T1-weighted, T2-weighted, and composite images were used as inputs. The digital imaging and communications in medicine (DICOM) images were converted to 8-bit red-green-blue images. The red and blue channels of the composite images were assigned to 8-bit grayscale pixel values in T1-weighted images, and the green channel was assigned to those in T2-weighted images. The prediction FLAIR and DWI images were of the same objects as the inputs. For the results, the prediction model with composite MRI input images in the DWI image showed the smallest relative mean absolute error (rMAE) and largest mutual information (MI), and that in the FLAIR image showed the largest relative mean-square error (rMSE), relative root-mean-square error (rRMSE), and peak signal-to-noise ratio (PSNR). For the FLAIR image, the prediction model with the T2-weighted MRI input images generated more accurate synthesis results than that with the T1-weighted inputs. The proposed image synthesis framework can improve the versatility and quality of multi-contrast MRI without extra scans. The composite input MRI image contributes to synthesizing the multi-contrast MRI image efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-023-01220-zDOI Listing

Publication Analysis

Top Keywords

images
13
mri image
12
image synthesis
8
fluid-attenuated inversion
8
inversion recovery
8
diffusion-weighted images
8
images dwi
8
composite images
8
prediction model
8
mri input
8

Similar Publications

Abnormal ferrous ion (Fe) levels lead to an increase in reactive oxygen species (ROS) in cells, disrupting intracellular viscosity and the occurrence of hepatocellular carcinoma (HCC). Simultaneously visualizing Fe and intracellular viscosity is essential for understanding the detailed pathophysiological processes of HCC. Herein, we report the first dual-responsive probe, , capable of simultaneously monitoring Fe and viscosity.

View Article and Find Full Text PDF

Magnetofluidic-Assisted Portable Automated Microfluidic Devices for Protein Detection.

Anal Chem

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.

To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.

View Article and Find Full Text PDF

Background: Infrared thermography technology is a diagnostic imaging modality that converts temperature information on the surface of the human body into visualised thermograms. This technology has the capacity to intuitively detect the presence of certain abnormal conditions or foci in the human body. In recent years, the application of this technology in medicine has become increasingly extensive, especially in the areas of auxiliary diagnosis and early screening of diseases.

View Article and Find Full Text PDF

Background: Bulbar function is frequently impaired in patients with spinal muscular atrophy (SMA). Although extremely important for the patient's quality of life, it is difficult to address therapeutically. Due to bulbar dysfunction, maximum mouth opening (MMO) is suspected to be reduced in children with SMA.

View Article and Find Full Text PDF

Background: Left atrial dissection is a rare and occasionally fatal complication of cardiac surgery and is defined as the creation of a false chamber through a tear in the mitral valve annulus extending into the left atrial wall. Some patients are asymptomatic, while others present with various symptoms, such as chest pain, dyspnea, and even cardiac arrest. Although there is no established management for left atrial dissection, surgery should be considered in patients with hemodynamic disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!