A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of acute exposure to amisulbrom on retinal development in zebrafish (Danio rerio) embryos. | LitMetric

Effects of acute exposure to amisulbrom on retinal development in zebrafish (Danio rerio) embryos.

Environ Sci Pollut Res Int

Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China.

Published: April 2023

AI Article Synopsis

  • Amisulbrom, an oomycete-specific fungicide, negatively affects zebrafish embryo development, impairing the visual phototransduction system.
  • Exposure to amisulbrom led to issues like microphthalmia, altered gene expression related to retinal cell differentiation, and increased retinal cell death.
  • The study highlights amisulbrom's toxicity to eye development, raising concerns about its ecological impact on aquatic life.

Article Abstract

Amisulbrom is an oomycete-specific fungicide that was developed by Nissan Chemical Industries Limited. The exposure of developing zebrafish embryo to amisulbrom caused disorders in the visual phototransduction system. However, the potential toxic mechanisms of amisulbrom on retinal development remains unclear. The research purpose of this study was to evaluate the adverse effects of amisulbrom on retinal development in a model organism, the zebrafish. Zebrafish embryos were treated with 0, 0.0075, 0.075, or 0.75 μM amisulbrom from 3 h post-fertilization (hpf) to 72 hpf. Compared with the control group, amisulbrom-treated zebrafish embryos displayed phenotypic microphthalmia, dysregulation of gene transcription levels (alcama, prox1a, sox2, vsx1, rho, bluops, rdops, uvops, and grops) related to the retinal cell layer differentiation, and increased retinal apoptosis. In addition, the content of glutathione and malondialdehyde increased significantly after exposure to amisulbrom. Overall, our data demonstrate the toxicity of amisulbrom to eye development, which will help to assess the potential ecotoxicological impacts posed by amisulbrom to aquatic species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25584-7DOI Listing

Publication Analysis

Top Keywords

amisulbrom retinal
12
retinal development
12
amisulbrom
9
exposure amisulbrom
8
zebrafish embryos
8
retinal
5
zebrafish
5
effects acute
4
acute exposure
4
development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!