Background: Agricultural landscapes provide resources for arthropod pests as well as their natural enemies. To develop integrated pest management (IPM) practices, it is important to understand how spatiotemporal location influences crop colonization and damage severity. We performed a 3-year (2016-2018) field experiment in winter oilseed rape (OSR, Brassica napus) fields in Estonia, where half of the fields were within 500 m of the location of the previous year's winter OSR field and half were outside this zone. We investigated how distance from the previous year's OSR crop influences the infestation and parasitism rates of two of its most important pests: the pollen beetle (Brassicogethes aeneus) and the cabbage seed weevil (Ceutorhynchus obstrictus).

Results: When the distance from the previous year's OSR crop was >500 m, we recorded significantly reduced pest pressure by both B. aeneus and C. obstrictus in the study fields. Biocontrol of both pests, provided by parasitic wasps, was high in each study year and commonly not affected by distance. Mean parasitism rates of B. aeneus were >31%, occasionally reaching >70%; for C. obstrictus, mean parasitism was >46%, reaching up to 79%, thereby providing effective biocontrol for both pest species.

Conclusion: Spatiotemporal separation of OSR fields can reduce pest pressure without resulting in reduced parasitism of OSR pests. This supports a spatiotemporal field separation concept as an effective and sustainable technique for IPM in OSR. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7391DOI Listing

Publication Analysis

Top Keywords

pest pressure
12
previous year's
12
oilseed rape
8
pest management
8
distance previous
8
year's osr
8
osr crop
8
parasitism rates
8
osr
7
pest
6

Similar Publications

Spodoptera litura (Fabricius) is a major polyphagous pest of global relevance due to the damage it causes to various crops. Chlorpyrifos (CPF) is generally used by farmers to manage S. litura, however, its widespread use has resulted in the development of insecticide resistance.

View Article and Find Full Text PDF

Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.

View Article and Find Full Text PDF

Defensive tactics: lessons from Drosophila.

Biol Open

December 2024

Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA.

Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation.

View Article and Find Full Text PDF

Background: The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood.

Results: In this study, we identified a unique fungal-specific TF in M.

View Article and Find Full Text PDF

Symbiotic microbial population composition of under temperature and pesticide pressures.

Front Microbiol

December 2024

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.

Insect population control using pesticides faces new challenges as global temperatures change. Symbiotic bacteria of insects play a key role in insect resistance to pesticides, and these symbiotic bacteria themselves are sensitive to the effects of temperature changes. , a sucking pest, survives in a wide range of temperatures (15°C-35°C), and is presently controlled predominantly using the pesticide imidacloprid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!