One of the most common causes of urinary tract infections (UTIs) is Proteus species. Because there is little information on the pathogenicity of Proteus species isolated from Iran, we assessed their virulence characteristics and antibiotic resistance in this study. In Shahrekord, Iran, 260 isolates of Proteus causing UTIs were identified from patients. Polymerase chain reaction for gene amplification was used to determine virulence features and antibiotic resistance gene distribution in uropathogenic Proteus spp. After biochemical and molecular analysis, 72 (27.69%) of the 260 collected samples were recognized as Proteus mirabilis, and 127 (48.84%) specimens were Pr. vulgaris in both male and female forms. A significant interaction effect between Pr. mirabilis and Pr. vulgaris infections and the sex of patients was seen in both the male and female groups. No statistically significant difference was observed between Pr. mirabilis infection and season in different year seasons. However, in different seasons of the year, a statistically significant difference was observed between infection with Pr. vulgaris in autumn and other seasons. There was a considerable difference between Pr. mirabilis and Pr. vulgaris infections at different ages in various age groups. As people aged, infections occurred more frequently. Fim,pap,kspMT, and set1 genes had the highest expression in both Pr. vulgaris and Pr. mirabilis. Also, the highest rate of antibiotic resistance of Pr. vulgaris and Pr. mirabilis is attributed to the high expression of aac(3)-IV,tet(A), and blaSHV genes. In conclusion, identifying these genes as the key controllers of Proteus virulence factors might help with better infection management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/lambio/ovac043 | DOI Listing |
Klin Mikrobiol Infekc Lek
March 2024
Institute of Microbiology, Faculty of Medicine, Palacky University in Olomouc, Czech Repubic, e-mail:
Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).
Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.
Discov Nano
January 2025
National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India.
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.
View Article and Find Full Text PDFBackground: Group B streptococcus (GBS) causes neonatal invasive disease, mainly sepsis and meningitis. Understanding the clinical characteristics, laboratory tests, and antibiotic resistance patterns of GBS invasive infections provides reliable epidemiological data for preventing and treating GBS infections.
Methods: Clinical characteristics and laboratory test results from 86 patients with neonatal invasive disease (45 cases of early-onset disease [EOD] and 41 cases of late-onset disease [LOD]) recruited from Fujian Maternity and Child Health Hospital between January 2012 and December 2021 were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!