High-throughput density functional theory (DFT) calculations allow for a systematic search for conventional superconductors. With the recent interest in two-dimensional (2D) superconductors, we used a high-throughput workflow to screen over 1000 2D materials in the JARVIS-DFT database and performed electron-phonon coupling calculations, using the McMillan-Allen-Dynes formula to calculate the superconducting transition temperature () for 165 of them. Of these 165 materials, we identify 34 dynamically stable structures with transition temperatures above 5 K, including materials such as WN, NbO, ZrBrO, TiClO, NaSnS, MgBC, and the previously unreported MgBN ( = 21.8 K). Finally, we performed experiments to determine the of selected layered superconductors (2H-NbSe, 2H-NbS, ZrSiS, FeSe) and discuss the measured results within the context of our DFT results. We aim that the outcome of this workflow can guide future computational and experimental studies of new and emerging 2D superconductors by providing a roadmap of high-throughput DFT data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988690PMC
http://dx.doi.org/10.1021/acs.nanolett.2c04420DOI Listing

Publication Analysis

Top Keywords

two-dimensional superconductors
8
superconductors high-throughput
8
superconductors
5
high-throughput
4
high-throughput dft-based
4
dft-based discovery
4
discovery generation
4
generation two-dimensional
4
high-throughput density
4
density functional
4

Similar Publications

A Two-Dimensional Superconducting Electron Gas at LaFeO/SrTiO Interfaces.

Nano Lett

December 2024

National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China.

Transition metal oxide interfaces have garnered great attention due to their fascinating properties that are absent in their bulk counterparts. The high mobility and coexistence of superconductivity and magnetism at these interfaces remain compelling research topics. Here, we first report superconductivity in the 2DEG formed at the LaFeO/SrTiO interfaces, characterized by a superconducting transition temperature () of 333 mK and a superconducting layer thickness of 13.

View Article and Find Full Text PDF
Article Synopsis
  • The research explores how to trigger superconductivity in very thin semiconductor materials using excitons to create an effective attraction between electrons, expanding beyond traditional phonon-mediated superconductivity.
  • By including interactions related to trions, the study shows that the electron-exciton interaction varies significantly with frequency and momentum, leading to a transition between weakly bound Cooper pairs and a superfluid state of bipolarons.
  • Despite the complexity of strong-coupling conditions, the resulting bipolarons are lightweight, allowing for critical temperatures that can reach up to 10% of the Fermi temperature, suggesting that two-dimensional material heterostructures could be valuable for achieving high-temperature superconductivity when electron doping and trion effects are optimized.
View Article and Find Full Text PDF

Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS.

Nano Lett

December 2024

State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China.

Two-dimensional 1T-TaS is renowned for its exotic physical properties including superconductivity, Mott physics, flat-band electronics, and charge density wave (CDW) orders. In particular, the CDW phase transitions (PTs) in 1T-TaS attracted extensive research interest, showing prominent potential in electronic devices. However, mechanisms underlying electrically driven PTs remain elusive.

View Article and Find Full Text PDF

Twofold Anisotropic Superconductivity in Bilayer T_{d}-MoTe_{2}.

Phys Rev Lett

November 2024

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Article Synopsis
  • Noncentrosymmetric two-dimensional superconductors like few-layer T_{d}-MoTe_{2} exhibit unique superconducting properties, including upper critical fields exceeding the Pauli limit by up to 600%.
  • The enhancement of these properties is still debated, with theories suggesting influences from either spin-orbit parity coupling or tilted Ising spin-orbit coupling.
  • In bilayer T_{d}-MoTe_{2}, experiments show superconductivity has a twofold symmetry influenced by magnetic and electric fields, and findings support tilted Ising spin-orbit coupling as the main mechanism.
View Article and Find Full Text PDF

Topological Bound on the Structure Factor.

Phys Rev Lett

November 2024

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

We show that the static structure factor of general many-body systems with U(1) symmetry has a lower bound determined only by the ground state Chern number. Our bound relies only on causality and non-negative energy dissipation, and holds for a wide range of two-dimensional gapped systems. We apply our theory to (fractional) Chern insulators, (fractional) quantum spin Hall insulators, topological superconductors, and chiral spin liquids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!