This study investigated the variations in the temporal distributions and the lengths of times utilized for grazing, ruminating, and idling behaviors by grazing dairy cows over 24 h. Spring-calved lactating dairy cows (N = 54) from three breeds, Holstein-Friesian (HFR), Jersey (JE), and KiwiCross (KC) in different lactations (1st, 2nd, 3rd) and with different breeding worth index values (103 < BW > 151) were selected. The cows were managed through a rotational grazing scheme and milked once a day at 0500 hours. The cows grazed mainly pasture and consumed additional feeds (maize silage and turnips) in the summer and autumn seasons. AfiCollar was used to record grazing and rumination behaviors (min/h) in the individual cows throughout the lactation period (~270 d). The time neither utilized for grazing nor rumination was counted as idling behavior (min/h). A repeat measure design with PROC MIXED was performed in SAS considering the effects of breed, lactation, individual cow, the hour of the day, season, day within the season, and supplementary feed within the season to evaluate the difference in grazing, rumination, and idling behaviors. Hour of the day, season, day within season, and supplementary feed had significant effects on grazing, rumination, and idling behaviors. Regardless of the season and supplementary feed, cows spent most of the daytime grazing and most of the nighttime ruminating. Grazing activity remained consistently high throughout the day with two peaks around dawn and dusk and a short peak around midnight. Rumination activity remained high from the late evening until early morning. Grazing and ruminating patterns were similar between different breeds and lactations, however, JE cows grazed slightly longer than HFR and KC, and first-lactation cows grazed slightly longer than those in higher lactations. The onset and cessation of grazing activity by the cows were adjusted according to varying day lengths by season. Cows finished grazing earlier when they consumed additional supplements or silage along with pasture. Cows from different breed groups and lactations spent most of their 24 h grazing followed by ruminating and idling. Season and supplementary feed potentially affected the variations in behavior time budgets. These findings should support improving measures for grazing management to address pasture allocation and additional feed demands, and animal welfare in varying environmental and/or managemental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994596 | PMC |
http://dx.doi.org/10.1093/jas/skad038 | DOI Listing |
Sensors (Basel)
December 2024
Center for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria.
Monitoring animal behavior using sensor technologies requires prior testing under varying conditions because behaviors can differ significantly, such as between grazing and confined cows. This study aimed to validate several sensor systems for classifying rumination and lying behaviors in cows on pasture under different environmental conditions, compare the sensors' performance at different time resolutions, and evaluate a correction algorithm for rumination data. Ten Simmental dairy cows were monitored on pasture, each simultaneously equipped with an ear-tag accelerometer (ET), two different leg-mounted accelerometers (LMs), and a noseband sensor (NB).
View Article and Find Full Text PDFJ Dairy Sci
December 2024
DairyNZ Ltd., PO Box 85066, Lincoln 7647, New Zealand.
Data from behavior-monitoring and location (global positioning system) devices fitted to dairy cows may improve our understanding of how animal behavior and movement are associated with feed availability and quality. We hypothesized that data from behavior-monitoring and location sensors may be associated with feed availability in a paddock within a rotationally grazed dairy system. To investigate this, 100 cows were randomly assigned to one of 4 groups (n = 25 cows per group) and allocated to different target pasture allocations to meet either 80%, 100%, or 120% of their estimated ME requirements across 2 experimental periods (n = 20 d per experimental period), during late-spring (Experimental Period 1; November 7 to November 26 2021) and late-summer (Experimental Period 2; 27 February to 18 March 2022).
View Article and Find Full Text PDFJ Dairy Res
December 2024
Grupo de Estudos em Bovinos Leiteiros, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil.
This Research Communication set out to (1) evaluate the behaviour and performance of dairy calves raised on pasture individually or in groups, and (2) evaluate the influence of physical enrichment on the behaviour and performance of dairy calves raised in groups on pasture. Although there was no difference in grazing behaviour when housed in groups, calves spent longer eating concentrate, ruminating and drinking water. Additionaly, calves housed individually spend part of their time trying to get close to a neighbouring calf.
View Article and Find Full Text PDFTrop Anim Health Prod
October 2024
Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil.
Dietary supplementation of fat can be an important source of energy to compensate for the reduction in dry matter intake in dairy cows during heat stress periods. Studies have reported that supplementing dairy cow diets with linseed oil (LO) can increase milk yield and enhance the levels of beneficial fatty acids, such as omega-3 fatty acids, in the milk. The objective of this research was to evaluate the effect of LO supplementation on milk fatty acids profile, milk yield and composition, and physiological parameters of grazing cows.
View Article and Find Full Text PDFJDS Commun
September 2024
DairyNZ Ltd., PO Box 85066, Lincoln University, Lincoln, New Zealand 7647.
This study aimed to compare grazing behavior of dairy cows with highly contrasting pasture allocation frequencies. The study ran from September 9, 2022, to December 2, 2022 (12 wk), during a time when daily pasture growth was expected to exceed daily herd intake. Three pasture allocation frequencies were compared, each with 11 spring-calving cows grazing a 4-ha farmlet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!