Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant's woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack-Jolly-Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066834 | PMC |
http://dx.doi.org/10.1093/evolut/qpad012 | DOI Listing |
J Mammal
February 2024
School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell Street, Tucson, AZ 85721, United States.
Disturbance events are increasing at a global scale, with cascading impacts to ecosystems and residents therein that include fragmentation and altered vegetation structure and composition. Such changes may disproportionately impact small mammal movements, risk perception, and community dynamics as smaller species perceive such changes at finer spatial scales. We examined movement response to burn severity, vegetation structure, and composition in Mexican woodrats (), a common but understudied small mammal species.
View Article and Find Full Text PDFJ Vector Ecol
December 2024
Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A.,
Predation is a fundamental selective pressure on animal morphology, as morphology is directly linked with physical performance and evasion. Bipedal heteromyid rodents, which are characterized by unique morphological traits such as enlarged hindlimbs, appear to be more successful than sympatric quadrupedal rodents at escaping predators such as snakes and owls, but no studies have directly compared the escape performance of bipedal and quadrupedal rodents. We used simulated predator attacks to compare the evasive jumping ability of bipedal kangaroo rats () to that of three quadrupedal rodent groups-pocket mice (), woodrats (), and ground squirrels ().
View Article and Find Full Text PDFJ Anim Ecol
December 2024
Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA.
It is widely recognized that predators can influence prey through both direct consumption and by inducing costly antipredator behaviours, the latter of which can produce nonconsumptive effects that cascade through trophic systems. Yet, determining how particular prey manage risk in natural settings remains challenging as empirical studies disproportionately focus on single predator-prey dyads. Here, we contrast foraging strategies within the context of a primary and secondary prey to explore how antipredator behaviours emerge as a product of predation intensity as well as the setting in which an encounter takes place.
View Article and Find Full Text PDFEvolution
October 2024
Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, United States.
Range expansion and contraction are among the most common biotic responses to changing environmental conditions, yet much is to be learned about the mechanisms that underlie range-edge population dynamics, especially when those areas are points of secondary contact between closely related species. Here, we present field-measured parentage data that document the reproductive outcomes of changes in mate availability at a secondary contact zone between two species of woodrat in the genus Neotoma. Changes in mate availability resulted from drought-driven differential survival between the species and their hybrids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!