Liquid-liquid phase transition in deeply supercooled Stillinger-Weber silicon.

PNAS Nexus

Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Rachenahalli Lake Road, Bengaluru 560064, India.

Published: September 2022

The existence of a phase transition between two distinct liquid phases in single-component network-forming liquids (e.g. water, silica, silicon) has elicited considerable scientific interest. The challenge, both for experiments and simulations, is that the liquid-liquid phase transition (LLPT) occurs under deeply supercooled conditions, where crystallization occurs very rapidly. Thus, early evidence from numerical equation of state studies was challenged with the argument that slow spontaneous crystallization had been misinterpreted as evidence of a second liquid state. Rigorous free-energy calculations have subsequently confirmed the existence of a LLPT in some models of water, and exciting new experimental evidence has since supported these computational results. Similar results have so far not been found for silicon. Here, we present results from free-energy calculations performed for silicon modeled with the classical, empirical Stillinger-Weber-potential. Through a careful study employing state-of-the-art constrained simulation protocols and numerous checks for thermodynamic consistency, we find that there are two distinct metastable liquid states and a phase transition. Our results resolve a long-standing debate concerning the existence of a liquid-liquid transition in supercooled liquid silicon and address key questions regarding the nature of the phase transition and the associated critical point.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802493PMC
http://dx.doi.org/10.1093/pnasnexus/pgac204DOI Listing

Publication Analysis

Top Keywords

phase transition
20
liquid-liquid phase
8
deeply supercooled
8
free-energy calculations
8
transition
6
silicon
5
transition deeply
4
supercooled stillinger-weber
4
stillinger-weber silicon
4
silicon existence
4

Similar Publications

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".

View Article and Find Full Text PDF

Magnetocaloric high-entropy alloys (HEAs) have recently garnered significant interest owing to their potential applications in magnetic refrigeration, offering a wide working temperature range and large refrigerant capacity. In this study, we thoroughly investigated the structural, magnetic, and magnetocaloric properties of equiatomic GdDyHoErTm HEAs. The as-cast alloy exhibits a single hexagonal phase, a randomly distributed grain orientation, and complex magnetism.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!