Conventional mosquito marking technology for mark-release-recapture (MRR) is quite limited in terms of information capacity and efficacy. To overcome both challenges, we have engineered, lab-tested, and field-evaluated a new class of marker particles, in which synthetic, short DNA oligonucleotides (DNA barcodes) are adsorbed and protected within tough, crosslinked porous protein microcrystals. Mosquitoes self-mark through ingestion of microcrystals in their larval habitat. Barcoded microcrystals persist trans-stadially through mosquito development if ingested by larvae, do not significantly affect adult mosquito survivorship, and individual barcoded mosquitoes are detectable in pools of up to at least 20 mosquitoes. We have also demonstrated crystal persistence following adult mosquito ingestion. Barcode sequences can be recovered by qPCR and next-generation sequencing (NGS) without detectable amplification of native mosquito DNA. These DNA-laden protein microcrystals have the potential to radically increase the amount of information obtained from future MRR studies compared to previous studies employing conventional mosquito marking materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802479 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgac190 | DOI Listing |
Biochim Biophys Acta Gen Subj
January 2025
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:
Microcrystal electron diffraction (MicroED) is an emerging method for the structure determination of proteins and peptides, enzyme-inhibitor complexes. Several structures of biomolecules, including lysozyme, proteinase K, adenosine receptor A2A, insulin, xylanase, thermolysin, DNA, and Granulovirus occlusion bodies, have been successfully determined through MicroED. As MicroED uses very small crystals for structure determination, therefore, it has several advantages over conventional X-ray diffraction methods.
View Article and Find Full Text PDFNat Protoc
December 2024
Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
Anal Chem
December 2024
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India.
Cocrystallization of trans-aconitic acid (TACA) and isonicotinamide (INA) using liquid assisted mechanochemical grinding results in a unique supramolecular hydrogen-bonded organic framework (HOF) system encapsulating various organic solvents (liquid guest) with the formation of channel inclusion compounds. Dimension and shape of the framework is dependent on the solvent used during liquid assisted grinding (LAG). Although crystal structure of the cocrystal (TACA) ⋅ (INA) ⋅ (HO)@(INA) has been determined by Single Crystal X-ray diffraction (SCXRD), crystal structures of 3 cocrystal HOFs were determined by microcrystal electron diffraction (MicroED) and synchrotron X-ray diffraction due to lack of suitable single crystal.
View Article and Find Full Text PDFSmall
December 2024
Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
Peptide self-assembly is a complex hierarchical process involving the progressive formation of secondary structures, such as α-helices, β-sheets, and turns, during the early stages. It is precisely these multi-component building blocks that contribute to the complexity of protein assemblies in living organisms. While coiled coils are well-understood in protein folding, determining the structural characteristics governing their lateral packing remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!