There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802477 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgac212 | DOI Listing |
Front Cardiovasc Med
December 2024
Department of Medicine DIMED, University of Padua, Padua, Italy.
Background: An increasing number of patients with congenital heart disease (CHD) engage in physical activities and may exercise at high altitudes (HA). The physiological adaptations required at HA and their implications on individuals with CHD, especially during exercise, remain underexplored. This systematic review aims to investigate cardiopulmonary exercise responses to short-term HA exposure in individuals with CHD.
View Article and Find Full Text PDFCureus
December 2024
Biostatistics, The Oxford Center, Brighton, USA.
Using simulated data with duplicate observational data points, this research aims to highlight the notable efficiency of repeated measures analysis of variance (ANOVA) compared to one-way ANOVA as a more powerful statistical model. One of the principal advantages of repeated measures ANOVA is its design, in which each subject acts as their own control. This methodology allows for the statistical mitigation of individual differences among subjects, thereby reducing extraneous variability (noise) that can obscure the effects of the experimental conditions under investigation.
View Article and Find Full Text PDFJ Robot Surg
January 2025
Multimedia University, Cyberjaya, Malaysia.
Artificial intelligence and robotics are revolutionizing surgical practices by enhancing precision, efficiency, and patient outcomes. With global healthcare systems increasingly adopting AI-driven technologies, the integration of robotics in surgery addresses critical challenges such as surgical accuracy, minimally invasive techniques, and healthcare accessibility. However, disparities in access and ethical concerns regarding automation persist globally, necessitating a balanced discourse on these advancements.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shaanxi Normal University, School of Materials and Energy, xian, CHINA.
Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, No. 189 Songling Road, 266101, Qingdao, CHINA.
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!