Introduction: Drought stress has drastically hampered the growth and yield of many crops. Therefore, environmentally safe agricultural techniques are needed to mitigate drought stress impact. To this end, foliar spray of nano-nutrients solution to (NNS) alleviate harmful aspects of drought stress.

Methods: In a completely randomized design (CRD) experiment, seedlings were transplanted into pots at 2-3 leaf stage, each filled with loam-compost- organic manure soil (3:1:1). Plants were divided into two groups. (a) control group (b) applied stress group. Plants at vegetative stage were treated with 100% FC for control group and 60% FC for drought group, and these levels were maintained until harvesting. Three treatments of NNS with four levels i.e., 0%, 1%, 3% and 5% were given to all the pots after two weeks of drought stress treatment with a gap of 5 days at vegetative stage.

Results And Discussion: Application of 1% of nano-nutrient solution displayed an improvement in shoot length, shoot fresh and dry weight, number of leaves and flowers. Leaf chlorophylls and carotenoids and total phenolics contents were found maximum while minimum electrolyte leakage was observed at 3% application compared to control. Further, 1% application of NNS increased the Leaf RWC%, total soluble sugars, flavonoids contents. 5% NNS application exhibited higher total free amino acids with minimum lipid peroxidation rate in leaves of tomato under drought. Antioxidant enzyme activities increased in a concentration dependent manner as gradual increase was observed at 1%, 3% and 5%, respectively. Overall, this study introduced a new insights on using nano-nutrient solutions to maintain natural resources and ensure agricultural sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879269PMC
http://dx.doi.org/10.3389/fpls.2022.1066790DOI Listing

Publication Analysis

Top Keywords

drought stress
16
nano-nutrients solution
8
tomato drought
8
control group
8
drought
7
stress
5
foliar application
4
application nano-nutrients
4
solution growth
4
growth biochemical
4

Similar Publications

Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.

View Article and Find Full Text PDF

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF

Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan.

View Article and Find Full Text PDF

Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied.

View Article and Find Full Text PDF

In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!