Chronic kidney disease (CKD) is a dangerous ailment that can last a person's entire life and is caused by either kidney malignancy or decreased kidney functioning. It is feasible to halt or slow the progression of this chronic disease to an end-stage wherein dialysis or surgical intervention is the only method to preserve a patient's life. Earlier detection and appropriate therapy can increase the likelihood of this happening. Throughout this research, the potential of several different machine learning approaches for providing an early diagnosis of CKD has been investigated. There has been a significant amount of research conducted on this topic. Nevertheless, we are bolstering our approach by making use of predictive modeling. Therefore, in our approach, we investigate the link that exists between data factors as well as the characteristics of the target class. We are capable of constructing a collection of prediction models with the help of machine learning and predictive analytics, thanks to the better measures of attributes that can be introduced using predictive modeling. This study starts with 25 variables in addition to the class property, but by the end, it has narrowed the list down to 30% of those parameters as the best subset to identify CKD. Twelve different machine learning-based classifiers have been tested in a supervised learning environment. Within the confines of a supervised learning environment, a total of 12 different machine learning-based classifiers have indeed been examined, with the greatest performance indicators being an accuracy of 0.983, a precision of 0.98, a recall of 0.98, and an F1-score of 0.98 for the XgBoost classifier. The way the research was done leads to the conclusion that recent improvements in machine learning, along with the help of predictive modeling, make for an interesting way to find new solutions that can then be used to test the accuracy of prediction in the field of kidney disease and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874070 | PMC |
http://dx.doi.org/10.1016/j.jpi.2023.100189 | DOI Listing |
This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.
View Article and Find Full Text PDFPLoS One
January 2025
Academy of Fine Arts, Jiangsu Second Normal University, Nanjing, China.
Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.
View Article and Find Full Text PDFPLoS One
January 2025
School of Economics and Trade, Guangzhou Xinhua University, Dongguan, China.
Stock price prediction is a challenging research domain. The long short-term memory neural network (LSTM) widely employed in stock price prediction due to its ability to address long-term dependence and transmission of historical time signals in time series data. However, manual tuning of LSTM parameters significantly impacts model performance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Structural and Molecular Biology, University College London, London, United Kingdom.
Previous studies have highlighted the inherent subjectivity, complexity, and challenges associated with research quality leading to fragmented findings. We identified determinants of research publication quality in terms of research activities and the use of information and communication technologies by employing an interdisciplinary approach. We conducted web-based surveys among academic scientists and applied machine learning techniques to model behaviors during and after the COVID-19 pandemic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!