Ising Model on Random Triangulations of the Disk: Phase Transition.

Commun Math Phys

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.

Published: December 2022

In Chen and Turunen (Commun Math Phys 374(3):1577-1643, 2020), we have studied the Boltzmann random triangulation of the disk coupled to an Ising model on its faces with Dobrushin boundary condition at its critical temperature. In this paper, we investigate the phase transition of this model by extending our previous results to arbitrary temperature: We compute the partition function of the model at all temperatures, and derive several critical exponents associated with the infinite perimeter limit. We show that the model has a local limit at any temperature, whose properties depend drastically on the temperature. At high temperatures, the local limit is reminiscent of the uniform infinite half-planar triangulation decorated with a subcritical percolation. At low temperatures, the local limit develops a bottleneck of finite width due to the energy cost of the main Ising interface between the two spin clusters imposed by the Dobrushin boundary condition. This change can be summarized by a novel order parameter with a nice geometric meaning. In addition to the phase transition, we also generalize our construction of the local limit from the two-step asymptotic regime used in Chen and Turunen (2020) to a more natural diagonal asymptotic regime. We obtain in this regime a scaling limit related to the length of the main Ising interface, which coincides with predictions from the continuum theory of (a.k.a. Liouville quantum gravity).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873814PMC
http://dx.doi.org/10.1007/s00220-022-04508-5DOI Listing

Publication Analysis

Top Keywords

local limit
16
phase transition
12
ising model
8
chen turunen
8
dobrushin boundary
8
boundary condition
8
temperatures local
8
main ising
8
ising interface
8
asymptotic regime
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!