A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal trends of COVID-19 antibodies in vaccinated healthcare workers undergoing repeated serological sampling: An individual-level analysis within 13 months in the ORCHESTRA cohort. | LitMetric

Short Summary: We investigated changes in serologic measurements after COVID-19 vaccination in 19,422 subjects. An individual-level analysis was performed on standardized measurements. Age, infection, vaccine doses, time between doses and serologies, and vaccine type were associated with changes in serologic levels within 13 months.

Background: Persistence of vaccine immunization is key for COVID-19 prevention.

Methods: We investigated the difference between two serologic measurements of anti-COVID-19 S1 antibodies in an individual-level analysis on 19,422 vaccinated healthcare workers (HCW) from Italy, Spain, Romania, and Slovakia, tested within 13 months from first dose. Differences in serologic levels were divided by the standard error of the cohort-specific distribution, obtaining standardized measurements. We fitted multivariate linear regression models to identify predictors of difference between two measurements.

Results: We observed a progressively decreasing difference in serologic levels from <30 days to 210-240 days. Age was associated with an increased difference in serologic levels. There was a greater difference between the two serologic measurements in infected HCW than in HCW who had never been infected; before the first measurement, infected HCW had a relative risk (RR) of 0.81 for one standard deviation in the difference [95% confidence interval (CI) 0.78-0.85]. The RRs for a 30-day increase in time between first dose and first serology, and between the two serologies, were 1.08 (95% CI 1.07-1.10) and 1.04 (95% CI 1.03-1.05), respectively. The first measurement was a strong predictor of subsequent antibody decrease (RR 1.60; 95% CI 1.56-1.64). Compared with Comirnaty, Spikevax (RR 0.83, 95% CI 0.75-0.92) and mixed vaccines (RR 0.61, 95% CI 0.51-0.74) were smaller decrease in serological level (RR 0.46; 95% CI 0.40-0.54).

Conclusions: Age, COVID-19 infection, number of doses, time between first dose and first serology, time between serologies, and type of vaccine were associated with differences between the two serologic measurements within a 13-month period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875291PMC
http://dx.doi.org/10.3389/fimmu.2022.1079884DOI Listing

Publication Analysis

Top Keywords

individual-level analysis
12
serologic levels
12
vaccinated healthcare
8
healthcare workers
8
changes serologic
8
serologic measurements
8
standardized measurements
8
difference serologic
8
serologic
5
temporal trends
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!