Complete mitochondrial genome of () (Goeze, 1777) (Coleoptera: Staphylinidae).

Mitochondrial DNA B Resour

Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.

Published: January 2023

The mitochondrial genome (mitogenome) of () (Goeze, 1777) (Coleoptera: Staphylinidae) is reported. This mitogenome (GenBank accession no. OL675411) is 16,600 bp in size and consists of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNA). Most PCGs use typical mitochondrial stop codon (TAR) except for , which uses a single T residue. The A, G, T, and C nucleotide base composition of the mitogenome is 40.61%, 7.66%, 40.34%, and 11.39%, respectively. The phylogenetic analyses recovered the monophyly of Aleocharinae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879196PMC
http://dx.doi.org/10.1080/23802359.2023.2167472DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
8
goeze 1777
8
1777 coleoptera
8
coleoptera staphylinidae
8
rna genes
8
complete mitochondrial
4
genome goeze
4
staphylinidae mitochondrial
4
genome mitogenome
4
mitogenome goeze
4

Similar Publications

A recent study proposed a new genetic lineage of leatherback turtles (Dermochelys coriacea) based on genetic analysis, environmental history, and local ecological knowledge (LEK), suggesting the existence of two possible species or subspecies on the beaches of Oaxaca, diverging ~ 13.5 Mya. However, this hypothesis may be influenced by nuclear mitochondrial DNA segments (NUMTs), which could have been misamplified as true mtDNA.

View Article and Find Full Text PDF

The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.

View Article and Find Full Text PDF

New insights into the relationship of mitochondrial metabolism and atherosclerosis.

Cell Signal

December 2024

Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China. Electronic address:

Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.

View Article and Find Full Text PDF

Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.

View Article and Find Full Text PDF

Integrative taxonomy of the genus Pseudoacanthocephalus (Acanthocephala: Echinorhynchida) in China, with the description of two new species and the characterization of the mitochondrial genomes of Pseudoacanthocephalus sichuanensis sp. n. and Pseudoacanthocephalus nguyenthileae.

Parasit Vectors

December 2024

Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.

Background: Acanthocephalans (thorny headed worms) of the genus Pseudoacanthocephalus mainly parasitize amphibians and reptiles across the globe. Some species of the genus Pseudoacanthocephalus also can accidentally infect human and cause human acanthocephaliasis. Current knowledge of the species composition of the genus Pseudoacanthocephalus from amphibians and reptiles in China is incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!