Objective: To understand the infection characteristics and risk factors for infection by analyzing multicenter clinical data of newly diagnosed multiple myeloma (NDMM) patients.
Methods: This study reviewed 564 NDMM patients from 2 large tertiary hospitals from January 2018 to December 2021, of whom 395 comprised the training set and 169 comprised the validation set. Thirty-eight variables from first admission records were collected, including patient demographic characteristics, clinical scores and characteristics, laboratory indicators, complications, and medication history, and key variables were screened using the Lasso method. Multiple machine learning algorithms were compared, and the best performing algorithm was used to build a machine learning prediction model. The model performance was evaluated using the AUC, accuracy, and Youden's index. Finally, the SHAP package was used to assess two cases and demonstrate the application of the model.
Results: In this study, 15 important key variables were selected, namely, age, ECOG, osteolytic disruption, VCD, neutrophils, lymphocytes, monocytes, hemoglobin, platelets, albumin, creatinine, lactate dehydrogenase, affected globulin, β2 microglobulin, and preventive medicine. The predictive performance of the XGBoost model was significantly better than that of the other models (AUROC: 0.8664), and it also performed well for the expected dataset (accuracy: 68.64%).
Conclusion: A machine learning algorithm was used to establish an infection prediction model for NDMM patients that was simple, convenient, validated, and performed well in reducing the incidence of infection and improving the prognosis of patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880856 | PMC |
http://dx.doi.org/10.3389/fninf.2022.1063610 | DOI Listing |
J Pediatr Psychol
January 2025
Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States.
Objective: This ancillary study's purpose is to describe the relationship between dose of treatment and body mass index (BMI) outcomes in a tele-behavioral health program delivered in the IDeA States Pediatric Clinical Trials Network to children and their families living in rural communities.
Methods: Participants randomized to the intervention were able to receive 26 contact hours (15 hr of group sessions and 11 hr of individual sessions) of material focused on nutrition, physical activity, and behavioral caregiver training delivered via interactive televideo. Dose of the intervention received by child/caregiver dyads (n = 52) from rural areas was measured as contact hours.
Biomed Phys Eng Express
January 2025
Radiation Oncology, Emory University, Emory Midtown Hospital, Atlanta, Georgia, 30322, UNITED STATES.
Although radiotherapy techniques are the primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity, and side effect. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on features extracted from pre-treatment imaging data. This study aims to compare different models in predicting radiation-induced xerostomia and sticky saliva in both early and late stage of HNC patients using CT and MRI image features along with demographics and dosimetric information.
View Article and Find Full Text PDFEnviron Technol
January 2025
Centre for Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India.
Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.
View Article and Find Full Text PDFHepatology
January 2025
Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!