A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Infertility control of transgenic fluorescent zebrafish with targeted mutagenesis of the gene by CRISPR/Cas9 genome editing. | LitMetric

Transgenic technology and selective breeding have great potential for the genetic breeding in both edible fish and ornamental fish. The development of infertility control technologies in transgenic fish and farmed fish is the critical issue to prevent the gene flow with wild relatives. In this study, we report the genome editing of the () gene in the zebrafish model, using the CRISPR/Cas9 technology to achieve a loss-of-function mutation in both wild-type zebrafish and transgenic fluorescent zebrafish to develop complete infertility control technology of farmed fish and transgenic fish. We effectively performed targeted mutagenesis in the gene of zebrafish with a single gRNA, which resulted in a small deletion (-7 bp) or insertion (+41 bp) in exon 2, leading to a null mutation. Heterozygotes and homozygotes of -knockout zebrafish were both selected by genotyping in the and generations. Based on a comparison of histological sections of the gonads between wild-type, heterozygous, and homozygous zebrafish mutants, the homozygous mutation (aa) resulted in the loss of germ cells. Still, there was no difference between the wild-type (AA) and heterozygous (Aa) zebrafish. The homozygous mutants of adult zebrafish and transgenic fluorescent zebrafish became all male, which had normal courtship behavior to induce wild-type female zebrafish spawning. However, they both had no sperm to fertilize the spawned eggs from wild-type females. Thus, all the unfertilized eggs died within 10 h. The targeted mutagenesis of the gene using the CRISPR/Cas9 technology is stably heritable by crossing of fertile heterozygous mutants to obtain sterile homozygous mutants. It can be applied in the infertility control of transgenic fluorescent fish and genetically improved farmed fish by selective breeding to promote ecologically responsible aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881232PMC
http://dx.doi.org/10.3389/fgene.2023.1029200DOI Listing

Publication Analysis

Top Keywords

infertility control
16
transgenic fluorescent
16
fluorescent zebrafish
12
targeted mutagenesis
12
mutagenesis gene
12
farmed fish
12
zebrafish
11
control transgenic
8
gene crispr/cas9
8
genome editing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!