Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated. Here, using two new CRISPR/Cas9-targeted Celsr1 and Celsr2 knockout mouse lines, we define the relative contributions of Celsr1 and Celsr2 to PCP establishment in the skin. We find that Celsr1 is the major Celsr family member involved in epidermal PCP. Removal of Celsr1 function alone abolishes PCP protein asymmetry and hair follicle polarization, whereas epidermal PCP is unaffected by loss of Celsr2. Further, elimination of both Celsr proteins only minimally enhances the phenotype. Using FRAP and junctional enrichment assays to measure differences in Celsr1 and Celsr2 adhesive interactions, we find that compared to Celsr1, which stably enriches at junctional interfaces, Celsr2 is much less efficiently recruited to and immobilized at junctions. As the two proteins seem equivalent in their ability to interact with core PCP proteins Vangl2 and Fz6, we suggest that perhaps differences in homophilic adhesion contribute to the differential involvement of Celsr1 and Celsr2 in epidermal PCP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878842 | PMC |
http://dx.doi.org/10.3389/fcell.2022.1064907 | DOI Listing |
Cell Rep
June 2023
Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA. Electronic address:
Adhesion G protein-coupled receptors (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear.
View Article and Find Full Text PDFAdhesion GPCRs (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2023
Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated.
View Article and Find Full Text PDFDev Neurobiol
March 2022
Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, India.
The Cadherin EGF LAG seven-pass G-type receptor (Celsr) family belongs to the adhesion G-protein coupled receptor superfamily. In most vertebrates, the Celsr family has three members (CELSR1-3), whereas zebrafish display four paralogues (celsr1a, 1b, 2, 3). Although studies have shown the importance of the Celsr family in planar cell polarity, axonal guidance, and dendritic growth, the molecular mechanisms of the Celsr family regulating these cellular processes in vertebrates remain elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:
After a peripheral nerve injury, the remaining Schwann cells undergo proliferation and adopt a migratory phenotype to prepare for the regeneration of nerves. Celsr2 has been reported to play an important role in the development and maintenance of the function of the nervous system. However, the role and mechanism of Celsr2 during peripheral nerve regeneration remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!