2,3-Dihydroquinazolinone derivatives are known for antiviral, antimicrobial, analgesic, anti-inflammatory, and anticancer activities. However, recent approaches used for their synthesis suffer from various drawbacks. Therefore, we have fabricated a highly efficient magnetic EDTA-coated catalyst, FeO@EDTA/CuI a simple approach. The ethylenediamine tetraacetic acid (EDTA) plays a crucial role by strongly trapping the catalytic sites of CuI nanoparticles on the surface of the FeO core. The designed nanocatalyst demonstrates its potential for the catalytic synthesis of 2,3-dihydroquinazolinones using 2-aminobenzamide with aldehydes as the reaction partners. The nanocatalyst was thoroughly characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma analysis (ICP). The physiochemically characterized nanocatalyst was tested for synthesis of 2,3-dihydroquinazolinones and higher yields of derivatives were obtained with less time duration. Moreover, the catalytic synthesis is easy to operate without the use of any kind of additives/bases. Furthermore, the catalyst was magnetically recoverable after the completion of the reaction and displayed reusability for six successive rounds without any loss in its catalytic efficiency (confirmed by XRD, SEM, and TEM of the recycled material) along with very low leaching of copper (2.12 ppm) and iron (0.06 ppm) ions. Also, the green metrics were found in correlation with the ideal values (such as factor (0.10), process mass intensity (1.10), carbon efficiency (96%) and reaction mass efficiency (90.62%)).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832363 | PMC |
http://dx.doi.org/10.1039/d2ra07496f | DOI Listing |
BMC Plant Biol
December 2024
College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.
Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.
BMC Plant Biol
December 2024
College of Life Science and Technology, Harbin Normal University, Harbin, China.
Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Botany, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India.
The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!