Elettra-Sincrotrone Trieste: present and future.

Eur Phys J Plus

Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy.

Published: January 2023

We present an overview of the Elettra-Sincrotrone Trieste research center, which hosts synchrotron and free-electron laser light sources. We review the current status, provide examples of recent achievements in basic and applied research and discuss the upgrade programs of the facility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872737PMC
http://dx.doi.org/10.1140/epjp/s13360-023-03654-6DOI Listing

Publication Analysis

Top Keywords

elettra-sincrotrone trieste
8
trieste future
4
future overview
4
overview elettra-sincrotrone
4
trieste center
4
center hosts
4
hosts synchrotron
4
synchrotron free-electron
4
free-electron laser
4
laser light
4

Similar Publications

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy is a spectrum-based technique that quantifies the absorption of infrared light by molecules present in the microbial cell. The aim of the present study was to evaluate the performance of the ATR-FTIR spectroscopic technique via I-dOne software (Version 2.0) compared with the MALDI-TOF MS in identifying spp.

View Article and Find Full Text PDF

SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.

J Struct Biol X

June 2025

Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.

Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .

View Article and Find Full Text PDF

BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!