A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of risk prediction model for identifying 30-day frailty in older inpatients with undernutrition: A multicenter cohort study. | LitMetric

AI Article Synopsis

  • The study aims to create a frailty prediction model for older adults experiencing undernutrition by considering physical, psychological, and lab test factors to assess their risk of frailty within 30 days.
  • Using data from a large-scale survey in China, researchers identified key indicators for frailty risk and validated their model through statistical analysis on separate cohorts of older adults.
  • Results showed a frailty incidence of approximately 13.5% in both the development and validation groups, leading to a predictive formula that incorporates various demographics and health-related variables to assess individual risk.

Article Abstract

Objective: To develop and externally validate a frailty prediction model integrating physical factors, psychological variables and routine laboratory test parameters to predict the 30-day frailty risk in older adults with undernutrition.

Methods: Based on an ongoing survey of geriatrics syndrome in elder adults across China (SGSE), this prognostic study identified the putative prognostic indicators for predicting the 30-day frailty risk of older adults with undernutrition. Using multivariable logistic regression analysis with backward elimination, the predictive model was subjected to internal (bootstrap) and external validation, and its calibration was evaluated by the calibration slope and its C statistic discriminative ability. The model derivation and model validation cohorts were collected between October 2018 and February 2019 from a prospective, large-scale cohort study of hospitalized older adults in tertiary hospitals in China. The modeling derivation cohort data ( = 2,194) were based on the SGSE data comprising southwest Sichuan Province, northern Beijing municipality, northwest Qinghai Province, northeast Heilongjiang Province, and eastern Zhejiang Province, with SGSE data from Hubei Province used to externally validate the model (validation cohort, = 648).

Results: The incidence of frailty in the older undernutrition derivation cohort was 13.54% and 13.43% in the validation cohort. The final model developed to estimate the individual predicted risk of 30-day frailty was presented as a regression formula: predicted risk of 30-day frailty = [1/(1+e )], where riskscore = -0.106 + 0.034 × age + 0.796 × sex -0.361 × vision dysfunction + 0.373 × hearing dysfunction + 0.408 × urination dysfunction - 0.012 × ADL + 0.064 × depression - 0.139 × nutritional status - 0.007 × hemoglobin - 0.034 × serum albumin - 0.012 × (male: ADL). Area under the curve (AUC) of 0.71 in the derivation cohort, and discrimination of the model were similar in both cohorts, with a C statistic of nearly 0.7, with excellent calibration of observed and predicted risks.

Conclusion: A new prediction model that quantifies the absolute risk of frailty of older patients suffering from undernutrition was developed and externally validated. Based on physical, psychological, and biological variables, the model provides an important assessment tool to provide different healthcare needs at different times for undernutrition frailty patients.

Clinical Trial Registration: Chinese Clinical Trial Registry [ChiCTR1800017682].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874615PMC
http://dx.doi.org/10.3389/fnut.2022.1061299DOI Listing

Publication Analysis

Top Keywords

30-day frailty
20
prediction model
12
frailty older
12
older adults
12
derivation cohort
12
model
10
frailty
9
cohort study
8
externally validate
8
frailty risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!