Five materials with antimicrobial function, by adding silver, were investigated to evaluate total silver concentration in the polymers and migration of silver nanoparticles from the materials in contact with food. The migration test was carried out by contacting plastic material with food simulant. Migration concentrations and average silver particle sizes were determined by mass spectrometry with inductively coupled plasma, performed in single particle mode (spICP-MS). Additionally, silver particles size and shape were characterized by scanning electron microscopy (SEM) with chemical identification by energy-dispersive X-ray spectroscopy (EDS). Most of samples showed detectable total silver concentrations and all samples showed migration of silver nanoparticles, with concentrations found between 0.00433 and 1.35 ng kg. Indeed, the migration study indicated the presence of silver nanoparticles in all food simulants, with sizes bellow 95 nm. The average particle size determined for acetic acid was greater than that observed in the other simulants. In the images obtained by SEM/EDS also confirmed the presence of spherical silver nanoparticles, between 17 and 80 nm. The findings reported herein will aid the health area concerning of human health risk assessments, aiming at regulating this type of material from a food safety point of view.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873845 | PMC |
http://dx.doi.org/10.1007/s13197-022-05650-7 | DOI Listing |
Anal Methods
September 2020
College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.
View Article and Find Full Text PDFAnal Methods
November 2017
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
Food Chem
January 2025
Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil. Electronic address:
Threshold determination forms an integral part of sensory and consumer studies applied for product control and development. The authors examined the potential of an impedimetric electronic tongue to discriminate basic tastes and consider limitations pertaining to the sensory evaluation process. Three samples at lower, medium, and higher concentration levels of basic taste compounds were prepared and subjected to consumer studies (n = 60) using the difference from-control (DFC) test.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!