A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct visualization of emergent metastatic features within an model of the tumor microenvironment. | LitMetric

Metabolic conditions such as hypoxia, nutrient starvation, and media acidification, together with interactions with stromal cells are critical drivers of metastasis. Since these conditions arise deep within tumor tissues with poor access to the bloodstream, the observation of nascent metastases is exceedingly challenging. On the other hand, conventional cell culture studies cannot capture the complex nature of metastatic processes. We thus designed and implemented an model of the tumor microenvironment to study the emergence of metastatic features in tumor cells in their native 3-dimensional (3D) context. In this system, named 3MIC, tumor cells spontaneously create ischemic-like conditions, and it allows the direct visualization of tumor-stroma interactions with high spatial and temporal resolution. We studied how 3D tumor spheroids evolve in the 3MIC when cultured under different metabolic environments and in the presence or absence of stromal cells. Consistent with previous experimental and clinical data, we show that ischemic environments increase cell migration and invasion. Importantly, the 3MIC allowed us to directly observe the emergence of these pro-metastatic features with single-cell resolution allowing us to track how changes in tumor motility were modulated by macrophages and endothelial cells. With these tools, we determined that the acidification of the extracellular media was more important than hypoxia in the induction of pro-metastatic tumor features. We also illustrate how the 3MIC can be used to test the effects of anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC allows us to directly observe the emergence of metastatic tumor features in a physiologically relevant model of the tumor microenvironment. This simple and cost-effective system can dissect the complexity of the tumor microenvironment to test perturbations that may prevent tumors from becoming metastatic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882016PMC
http://dx.doi.org/10.1101/2023.01.09.523294DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
16
model tumor
12
tumor
11
direct visualization
8
metastatic features
8
metabolic conditions
8
stromal cells
8
emergence metastatic
8
tumor cells
8
directly observe
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!