The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881923 | PMC |
http://dx.doi.org/10.1101/2023.01.04.522632 | DOI Listing |
Mol Cell
January 2025
Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:
Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287.
Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.
View Article and Find Full Text PDFMol Cell
January 2025
Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:
Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Nuclear speckles are dynamic nuclear bodies characterized by high concentrations of factors involved in RNA production. Although the contents of speckles suggest multifaceted roles in gene regulation, their biological functions are unclear. Here we investigate speckle variation in human cancer, finding two main signatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!