Foxp3+ regulatory T cells (Tregs) are capable suppressors of aberrant self-reactivity. However, TCR affinity and specificities that support Treg function, and how these compare to autoimmune T cells remain unresolved. In this study, we used antigen agnostic and epitope-focused analyses to compare TCR repertoires of regulatory and effector T cells that spontaneously infiltrate pancreatic islets of non-obese diabetic mice. We show that effector and regulatory T cell-derived TCRs possess similar wide-ranging reactivity for self-antigen. Treg-derived TCRs varied in their capacity to confer optimal protective function, and Treg suppressive capacity was in part determined by effector TCR affinity. Interestingly, when expressing the same TCR, Tregs showed higher Nur77-GFP expression than Teffs, suggesting Treg-intrinsic ability to compete for antigen. Our findings provide a new insight into TCR-dependent and independent mechanisms that regulate Treg function and indicate a TCR-intrinsic insufficiency in tissue-specific Tregs that may contribute to the pathogenesis of type 1 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882247PMC
http://dx.doi.org/10.1101/2023.01.17.523999DOI Listing

Publication Analysis

Top Keywords

tcr affinity
12
regulatory cells
8
treg function
8
tcr
5
increased tcr
4
tcr signaling
4
regulatory
4
signaling regulatory
4
cells
4
cells disengaged
4

Similar Publications

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies.

Theranostics

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.

T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses.

View Article and Find Full Text PDF

Background: Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies.

Methods: A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides.

View Article and Find Full Text PDF

The CD8 co-receptor exists as both an αα homodimer, expressed on subsets of specialized lymphoid cells, and as an αβ heterodimer, which is the canonical co-receptor on cytotoxic T-cells, tuning TCR thymic selection and antigen-reactivity in the periphery. However, the biophysical parameters governing human CD8αβ interactions with classical MHC class I (MHCI) and unconventional MHC-like molecules have not been determined. Using hetero-dimerized Fc-fusions to generate soluble human CD8αβ, we demonstrate similar weak binding affinity to multiple different MHCI alleles compared with CD8αα.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!