Throughout biology, RNA molecules form complex networks of molecular interactions that are central to their function, but remain challenging to investigate. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a straightforward method for elucidating the biomolecules near an RNA of interest, within its native cellular context. O-MAP uses programmable oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA, enabling nearby molecules to be enriched by streptavidin pulldown. O-MAP induces exceptionally precise RNA-localized biotinylation, and unlike alternative methods it enables straightforward optimization of its targeting accuracy. Using the 47S pre-ribosomal RNA and long noncoding RNA as models, we develop O-MAP workflows for unbiased discovery of RNA-proximal proteins, transcripts, and genomic loci. This revealed unexpected co-compartmentalization of and other chromatin-regulatory RNAs and enabled systematic characterization of nucleolar-chromatin interactions across multiple cell lines. O-MAP is portable to cultured cells, organoids, and tissues, and to RNAs of various lengths, abundances, and sequence composition. And, O-MAP requires no genetic manipulation and uses exclusively off-the-shelf parts. We therefore anticipate its application to a broad array of RNA phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882335PMC
http://dx.doi.org/10.1101/2023.01.19.524825DOI Listing

Publication Analysis

Top Keywords

proximity-interactome mapping
8
mapping o-map
8
proteins transcripts
8
transcripts genomic
8
genomic loci
8
o-map
7
rna
6
oligonucleotide-directed proximity-interactome
4
o-map unified
4
unified method
4

Similar Publications

Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods.

View Article and Find Full Text PDF

RNA molecules form complex networks of molecular interactions that are central to their function and to cellular architecture. But these interaction networks are difficult to probe in situ. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a method for elucidating the biomolecules near an RNA of interest, within its native context.

View Article and Find Full Text PDF

MX2 forms nucleoporin-comprising cytoplasmic biomolecular condensates that lure viral capsids.

Cell Host Microbe

October 2024

VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium. Electronic address:

Article Synopsis
  • Human myxovirus resistance 2 (MX2) inhibits HIV-1 and herpesviruses post-entry by interacting with viral capsids.
  • Researchers identified that MX2 interacts with numerous FG-rich proteins and forms multiprotein condensates essential for its antiviral activity.
  • These condensates trap the viral capsids and disrupt their entry into the nucleus, effectively preventing the viruses from delivering their genomes into host cells.
View Article and Find Full Text PDF

Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin species for this purpose. We then consider ways to add new dimensions to these experimental regimens, principally by releasing less reactive (i.

View Article and Find Full Text PDF

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!