DNA methylation plays an important physiological function in cells, and environmental changes result in fluctuations in DNA methylation levels. Metal ions have become both environmental and health concerns, as they have the potential to disrupt the genomic DNA methylation status, even on specific sequences. In the current research, the methylation status of two typical repetitive DNA elements, i.e., long-interspersed nuclear element-1 (LINE-1) and alpha satellite (α-sat), was imaged and assessed using methylation-specific fluorescence hybridization (MeFISH). This technique elucidated the effect of several metal ions on the methylation levels of repetitive DNA sequences. The upregulation and downregulation of the methylation levels of repetitive DNA elements by various metal ions were confirmed and depended on their concentration. This is the first example to investigate the effects of metal ions on DNA methylation in a sequence-specific manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881727PMC
http://dx.doi.org/10.3389/fchem.2023.1122474DOI Listing

Publication Analysis

Top Keywords

metal ions
20
repetitive dna
16
dna methylation
16
methylation status
12
dna elements
12
methylation levels
12
methylation
8
ions methylation
8
dna
8
levels repetitive
8

Similar Publications

We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.

View Article and Find Full Text PDF

Copper homeostasis; A rapier between mycobacteria and macrophages.

FASEB Bioadv

January 2025

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan Guangdong China.

Copper is a vital trace element crucial for mediating interactions between and macrophages. Within these immune cells, copper modulates oxidative stress responses and signaling pathways, enhancing macrophage immune functions and facilitating clearance. Conversely, copper may promote escape from macrophages through various mechanisms: inhibiting macrophage activity, diminishing phagocytic and bactericidal capacities, and supporting survival and proliferation.

View Article and Find Full Text PDF

This study introduces the first metal organic framework using ammelide as the organic ligand, showcasing stability in boiling water and high sensitivity in detecting dichromate ions.

View Article and Find Full Text PDF

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!