Background: Participant eligibility for the A4 Study was determined by amyloid PET imaging. Given the disadvantages of amyloid PET imaging in accessibility and cost, blood-based biomarkers may serve as a sufficient biomarker and more cost-effective screening tool for patient enrollment into preclinical AD trials.
Objective: To determine if a blood-based screening test can adequately identify amyloid burden in participants screened into a preclinical AD trial.
Methods: In this cross-sectional study, 224 participants from the A4 Study received an amyloid PET scan (18Florbetapir) within 90 days of blood sample collection. Blood samples from all study participants were processed within 2 h after phlebotomy. Plasma amyloid measures were quantified by Shimazdu and C2 N Diagnostics using mass spectrometry-based platforms. A corresponding subset of blood samples (n = 100) was processed within 24 h after phlebotomy and analyzed by C2 N.
Results: Plasma Aβ42/Aβ40 demonstrated the highest association for Aβ accumulation in the brain with an AUC 0.76 (95%CI = 0.69, 0.82) at C2 N and 0.80 (95%CI = 0.75, 0.86) at Shimadzu. Blood samples processed to plasma within 2 h after phlebotomy provided a better prediction of amyloid PET status than blood samples processed within 24 h (AUC 0.80 versus 0.64; p < 0.001). Age, sex, and APOE ɛ4 carrier status did not the diagnostic performance of plasma Aβ42/Aβ40 to predict amyloid PET positivity in A4 Study participants.
Conclusion: Plasma Aβ42/Aβ40 may serve as a potential biomarker for predicting elevated amyloid in the brain. Utilizing blood testing over PET imaging may improve screening efficiency into clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191492 | PMC |
http://dx.doi.org/10.3233/JAD-221118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!