Cortical network hyperexcitability related to synaptic dysfunction in Alzheimer's disease (AD) is a potential target for therapeutic intervention. In recent years, there has been increased interest in the prevalence of silent seizures and interictal epileptiform discharges (IEDs, or seizure tendency), with both entities collectively termed "subclinical epileptiform activity" (SEA), on neurophysiologic studies in AD patients. SEA has been demonstrated to be common in AD, with prevalence estimates ranging between 22-54%. Converging lines of basic and clinical evidence imply that modifying a hyperexcitable state results in an improvement in cognition. In particular, though these results require further confirmation, post-hoc findings from a recent phase II clinical trial suggest a therapeutic effect with levetiracetam administration in patients with AD and IEDs. Here, we review key unanswered questions as well as potential clinical trial avenues. Specifically, we discuss postulated mechanisms and treatment of hyperexcitability in patients with AD, which are of interest in designing future disease-modifying therapies. Criteria to prompt screening and optimal screening methodology for hyperexcitability have yet to be defined, as does timing and personalization of therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-220983 | DOI Listing |
Sci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Inhibitory interneurons normally regulate neural networks underlying memory and cognition, but are disrupted in Alzheimer's disease. Proper interneuron activity reduces amyloid-beta, whereas hyperexcitability elevates amyloid levels. Still, the underlying pathologic processes mediating interneuron dysfunction remain unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Alabama at Birmingham, Birmingham, AL, USA.
Background: Genome-wide association studies have identified genetic risk factors for AD, including a single nucleotide polymorphism in the bridging integrator 1 (BIN1) gene that is present in approximately 40% of the population and has the largest effect size of the common AD genetic risk factors. While the association between BIN1 and AD has been established, the mechanisms by which BIN1 contributes to AD remain understudied. We previously showed that increasing BIN1 expression in primary hippocampal neurons increases neuronal excitability (Voskobiynyk & Roth et al.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California San Francisco, San Francisco, CA, USA.
Background: Neural circuit hyperexcitability and impaired excitation-to-inhibition (E/I) activity is believed to be a key contributor to synaptic and network degeneration in Alzheimer's disease (AD). Extensive preclinical research on transgenic animal models of AD have demonstrated neuronal and circuit level E/I imbalance mediated by amyloid-beta (Aβ) and tau proteins. Synaptic and network deficits are also integral changes of aging.
View Article and Find Full Text PDFBrain Commun
November 2024
Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands.
Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!