A combustion-assisted polyol reduction (CPR) method has been developed to deposit electrocatalytically efficient and transparent Pt counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSSCs). Compared with conventional thermal decomposition of Pt precursors, CPR allows for a decrease in reduction temperature to 150 °C. The low-temperature processing is attributed to adding an organic fuel, acetylacetone (Hacac), which provides extra heat to lower reduction energy. In addition, the stable Pt complexes can simultaneously be formed in ethylene glycol (EG) and Hacac system, which leads to Pt nanoparticle size regulation. A ratio of Hacac to EG is optimized to achieve excellent electrocatalytic activity and high visible light transmittance for CEs. The bifacial DSSCs fabricated with CPR-Pt CEs (EG : Hacac=1 : 16) reach efficiencies of 6.71±0.16% and 6.41±0.15% in front and back irradiations, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202201142 | DOI Listing |
Chem Asian J
March 2023
Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea.
A combustion-assisted polyol reduction (CPR) method has been developed to deposit electrocatalytically efficient and transparent Pt counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSSCs). Compared with conventional thermal decomposition of Pt precursors, CPR allows for a decrease in reduction temperature to 150 °C. The low-temperature processing is attributed to adding an organic fuel, acetylacetone (Hacac), which provides extra heat to lower reduction energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!