Effect of Shear Strain on the Supercooled Itraconazole.

J Pharm Sci

Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.

Published: June 2023

This article investigated the effect of shear strain on the nematic itraconazole (ITR) from both elastic and plastic deformation regions. The rheo-dielectric technique was used for this purpose. It has been demonstrated that shear strain can change the sample color, liquid crystal alignment as well as its dielectric and thermal properties. The observed modifications depend on the shear strain value. One can distinguish four regions regarding the slope of ITR stress-strain dependence and caused changes. Proper alignment changes (obtained after the shearing procedure) can additionally affect the further recrystallization of ITR to other than the initial, i.e., second polymorphic form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2023.01.020DOI Listing

Publication Analysis

Top Keywords

shear strain
16
shear
4
strain supercooled
4
supercooled itraconazole
4
itraconazole article
4
article investigated
4
investigated shear
4
strain nematic
4
nematic itraconazole
4
itraconazole itr
4

Similar Publications

Generalizing multiple memories from a single drive: The hysteron latch.

Sci Adv

January 2025

Department of Physics, Pennsylvania State University, University Park, PA, USA.

Far-from-equilibrium systems can form memories of previous deformations or driving. In systems from sheared glassy materials to buckling beams to crumpled sheets, this behavior is dominated by return-point memory, in which revisiting a past extremum of driving restores the system to a previous state. Cyclic driving with both positive and negative strains forms multiple nested memories, as in a single-dial combination lock, while asymmetric driving (only positive strain) cannot.

View Article and Find Full Text PDF

Generic Elasticity of Thermal, Underconstrained Systems.

Phys Rev Lett

December 2024

CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.

Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.

View Article and Find Full Text PDF

Chewing-Activated TRPV4/PIEZO1--Zn Axes in a Rat Periodontal Complex.

J Dent Res

January 2025

Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA.

The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (), cell senescence indicator (), and oxygen status marker hypoxia-inducible factor-1α () in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo.

View Article and Find Full Text PDF

Objective: The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).

Methods: Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.

View Article and Find Full Text PDF

Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: From shear modulus-ankle angle to stress-strain characteristics.

J Appl Physiol (1985)

January 2025

Experimental Biomechanics Group, Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Germany.

Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscle group in 14 volunteers (7 females, 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!