In many functional magnetic resonance imaging (fMRI) studies, respiratory signals are unavailable or do not have acceptable quality due to issues with subject compliance, equipment failure or signal error. In large databases, such as the Human Connectome Projects, over half of the respiratory recordings may be unusable. As a result, the direct removal of low frequency respiratory variations from the blood oxygen level-dependent (BOLD) signal time series is not possible. This study proposes a deep learning-based method for reconstruction of respiratory variation (RV) waveforms directly from BOLD fMRI data in pediatric participants (aged 5 to 21 years old), and does not require any respiratory measurement device. To do this, the Lifespan Human Connectome Project in Development (HCP-D) dataset, which includes respiratory measurements, was used to both train a convolutional neural network (CNN) and evaluate its performance. Results show that a CNN can capture informative features from the BOLD signal time course and reconstruct accurate RV timeseries, especially when the subject has a prominent respiratory event. This work advances the use of direct estimation of physiological parameters from fMRI, which will eventually lead to reduced complexity and decrease the burden on participants because they may not be required to wear a respiratory bellows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2023.119904 | DOI Listing |
Clin Chem Lab Med
January 2025
SKML, Nijmegen, The Netherlands.
The EN ISO 15189:2022 standard, titled "Medical laboratories - Requirements for quality and competence," is a significant update to the regulations for medical laboratories. The revised standard was published on December 6, 2022, replacing both EN ISO 15189:2012 and EN ISO 22870:2016. Key objectives of the revision include: 1.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.
View Article and Find Full Text PDFChem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFAnnu Rev Immunol
January 2025
2Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden; email:
The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cells secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine and airways.
View Article and Find Full Text PDFChron Respir Dis
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
A 57-year-old female presented with a chief complaint of cough, with productive yellow sputum particularly severe in the morning. Bronchoscopy revealed inflammatory changes in both main bronchi, with abundant white purulent secretions and necrotic material adhering to the luminal surface. Histopathological examination showed chronic inflammatory changes in the mucosal tissue, with mild hyperplasia of the local squamous epithelium and evidence of keratinization in the surrounding area, consistent with a diagnosis of tracheal mucosal keratosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!