Development and validation of LC-MS/MS method for determining the metabolic stability, pharmacokinetics, and dose proportionality of a novel anti-inflammatory cofilin inhibitor.

J Pharm Biomed Anal

Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA. Electronic address:

Published: March 2023

A novel small molecule cofilin inhibitor (SZ-3) has recently become the focus of investigation for targeting neuroinflammation in different neurodegenerative diseases. In the present study, the metabolic stability, blood-brain barrier (BBB) penetration, and tissue concentration of SZ-3 were evaluated to support our future studies. In silico drug metabolism prediction was investigated using the StarDrop WhichP450 module. LC-MS/MS method was developed and validated to quantify the SZ-3 for in-vitro and in-vivo studies. The in-vitro metabolic stability was performed using human liver microsomes (HLMs), and the in-vivo pharmacokinetics were investigated in mice after a single intraperitoneal (IP) injection or oral (P.O.) administration, followed by a collection of blood and brain samples at different time points. The dose-proportionality was also evaluated after a single IP injection of three ascending doses (5, 10, and 25 mg/kg). In-vitro results showed that SZ-3 has a moderate intrinsic clearance (Cl) value of 17.42 ml/min/mg with a half-life (t) value of 39.77 mins, indicative of good bioavailability. In vivo study revealed that SZ-3 was rapidly absorbed, entered the brain, and yielded a good concentration of the unbound drug after IP and oral administration. However, the higher maximum concentration (C) values of IP and P.O. (2244 ng/ml and 1069 ng/g, respectively) revealed that the IP administration led to higher blood and brain concentrations than the P.O. Furthermore, C and area under the curve (AUC) of SZ-3 increased in a dose-proportional manner between the three ascending doses. These results will guide us in optimizing the dosing regimen for future SZ-3 pharmacological studies targeting neuroinflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975030PMC
http://dx.doi.org/10.1016/j.jpba.2023.115258DOI Listing

Publication Analysis

Top Keywords

metabolic stability
12
lc-ms/ms method
8
cofilin inhibitor
8
targeting neuroinflammation
8
oral administration
8
blood brain
8
three ascending
8
ascending doses
8
sz-3
7
development validation
4

Similar Publications

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp.

View Article and Find Full Text PDF

Variation of gene ratios in mock communities constructed with purified 16S rRNA during processing.

Sci Rep

December 2024

Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, n. 380., São Paulo, SP, CEP 05508-900, Brazil.

16S ribosomal nucleic acid (16S rRNA) analysis allows to specifically target the metabolically active members of microbial communities. The stability of the ratios between target genes in the workflow, which is essential for the bioprocess-relevance of the data derived from this analysis, was investigated using synthetic mock communities constructed by mixing purified 16S rRNA from Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), Klebsiella pneumoniae (Kp) and Burkholderia cepacia (Bc) in different proportions. The RT reaction yielded one copy of cDNA per rRNA molecule for Pa, Bc and Sa but only 2/3 of the expected cDNA from 16S rRNAs of Bs and Kp.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!