Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lymph node metastasis, the leading cause of mortality in esophageal squamous carcinoma (ESCC) with a highly complex tumor microenvironment, remains underexplored. Here, the transcriptomes of 85 263 single cells are analyzed from four ESCC patients with lymph node metastases. Strikingly, it is observed that the metastatic microenvironment undergoes the emergence or expansion of interferon induced IFIT3 T, B cells, and immunosuppressive cells such as APOC1 APOE macrophages and myofibroblasts with highly expression of immunoglobulin genes (IGKC) and extracellular matrix component and matrix metallopeptidase genes. A poor-prognostic epithelial-immune dual expression program regulating immune effector processes, whose activity is significantly enhanced in metastatic malignant epithelial cells and enriched in CD74 CXCR4 and major histocompatibility complex (MHC) class II genes upregulated malignant epithelia cells is discovered. Comparing with primary tumor, differential intercellular communications of metastatic ESCC microenvironment are revealed and furtherly validated via multiplexed immunofluorescence and immunohistochemistry staining, which mainly rely on the crosstalk of APOC1 APOE macrophages with tumor and stromal cell. The data highlight potential molecular mechanisms that shape the lymph-node metastatic microenvironment and may inform drug discovery and the development of new strategies to target these prometastatic nontumor components for inhibiting tumor growth and overcoming metastasis to improve clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982558 | PMC |
http://dx.doi.org/10.1002/advs.202204565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!