Robotic locomotion in subterranean environments is still unsolved, and it requires innovative designs and strategies to overcome the challenges of burrowing and moving in unstructured conditions with high pressure and friction at depths of a few centimeters. Inspired by antagonistic muscle contractions and constant volume coelomic chambers observed in earthworms, we designed and developed a modular soft robot based on a peristaltic soft actuator (PSA). The PSA demonstrates two active configurations from a neutral state by switching the input source between positive and negative pressure. PSA generates a longitudinal force for axial penetration and a radial force for anchorage, through bidirectional deformation of the central bellows-like structure, which demonstrates its versatility and ease of control. The performance of PSA depends on the amount and type of fluid confined in an elastomer chamber, generating different forces and displacements. The assembled robot with five PSA modules enabled to perform peristaltic locomotion in different media. The role of friction was also investigated during experimental locomotion tests by attaching passive scales like earthworm setae to the ventral side of the robot. This study proposes a new method for developing a peristaltic earthworm-like soft robot and provides a better understanding of locomotion in different environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884293 | PMC |
http://dx.doi.org/10.1038/s41598-023-28873-w | DOI Listing |
Bioinspir Biomim
January 2025
Inner Mongolia University, Department of Information Engineering, Ordos Institute of Applied Technology, Ordos 017000, China, Hohhot, 010021, CHINA.
Soft robots are usually manufactured using the pouring method and can only be configured with a fixed execution area, which often faces the problem of insufficient or wasteful performance in real-world applications, and cannot be reused for other tasks. In order to overcome this limitation, we propose a simple and controllable rather than redesigned method inspired by the bionic growth behavior of plants, and prepare bionic soft robots that can just meet the requirements of use, and transform biological intelligence into mechanical intelligence. Based on finite element method, we establish a theoretical model of soft robot performance.
View Article and Find Full Text PDFJ Robot Surg
January 2025
Pôle Santé Sud, Le Mans, France.
Pancreaticojejunostomy (PJ) is a critical step in pancreaticoduodenectomy (PD), often complicated by the risk of postoperative pancreatic fistula (POPF). This video report demonstrates a novel robotic PJ technique employing a self-expandable metallic stent. The method involves the use of the Da Vinci Xi robotic system and the WallFlex™ Biliary RX Stent for improved anastomotic support, particularly in high-risk cases defined by soft pancreatic texture and narrow duct diameter (<3 mm).
View Article and Find Full Text PDFGels
December 2024
Department of Mechanics and Engineering Science, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick-slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot's structure.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin 300072, China.
This paper presents a novel soft crawling robot controlled by gesture recognition, aimed at enhancing the operability and adaptability of soft robots through natural human-computer interactions. The Leap Motion sensor is employed to capture hand gesture data, and Unreal Engine is used for gesture recognition. Using the UE4Duino, gesture semantics are transmitted to an Arduino control system, enabling direct control over the robot's movements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!