A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory. | LitMetric

Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory.

Nat Commun

School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Published: January 2023

With the exponential growth of the semiconductor industry, radiation-hardness has become an indispensable property of memory devices. However, implementation of radiation-hardened semiconductor memory devices inevitably requires various radiation-hardening technologies from the layout level to the system level, and such technologies incur a significant energy overhead. Thus, there is a growing demand for emerging memory devices that are energy-efficient and intrinsically radiation-hard. Here, we report a nanoelectromechanical non-volatile memory (NEM-NVM) with an ultra-low energy consumption and radiation-hardness. To achieve an ultra-low operating energy of less than 10 [Formula: see text], we introduce an out-of-plane electrode configuration and electrothermal erase operation. These approaches enable the NEM-NVM to be programmed with an ultra-low energy of 2.83 [Formula: see text]. Furthermore, due to its mechanically operating mechanisms and radiation-robust structural material, the NEM-NVM retains its superb characteristics without radiation-induced degradation such as increased leakage current, threshold voltage shift, and unintended bit-flip even after 1 Mrad irradiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884203PMC
http://dx.doi.org/10.1038/s41467-023-36076-0DOI Listing

Publication Analysis

Top Keywords

memory devices
12
nanoelectromechanical non-volatile
8
non-volatile memory
8
ultra-low energy
8
[formula text]
8
memory
5
sub-10 fj/bit
4
fj/bit radiation-hard
4
radiation-hard nanoelectromechanical
4
memory exponential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!