The environmental fate of nanoplastics: What we know and what we need to know about aggregation.

NanoImpact

Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; TAKUVIK CNRS/Université Laval, IRL 3376, G1V 0A6 Québec, Canada. Electronic address:

Published: January 2023

The presence of nanoplastics in the environment has been proven. There is now an urgent need to determine how nanoplastics behave in the environment and to assess the risks they may pose. Here, we examine nanoplastic homo- and heteroaggregation, with a focus on environmentally relevant nanoplastic particle models. We made a systematic analysis of experimental studies, and ranked the environmental relevance of 377 different solution chemistries, and 163 different nanoplastic particle models. Since polymer latex spheres are not environmentally relevant (due to their monodisperse size, spherical shape, and smooth surface), their aggregation behavior in natural conditions is not transferable to nanoplastics. A few recent studies suggest that nanoplastic particle models that more closely mimic incidentally produced nanoplastics follow different homoaggregation pathways than latex sphere particle models. However, heteroaggregation of environmentally relevant nanoplastic particle models has seldom been studied. Despite this knowledge gap, the current evidence suggests that nanoplastics may be more sensitive to heteroaggregation than previously expected. We therefore provide an updated hypothesis about the likely environmental fate of nanoplastics. Our review demonstrates that it is essential to use environmentally relevant nanoplastic particle models, such as those produced with top-down methods, to avoid biased interpretations of the fate and impact of nanoplastics. Finally, it will be necessary to determine how the heteroaggregation kinetics of nanoplastics impact their settling rate to truly understand nanoplastics' fate and effect in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.impact.2023.100453DOI Listing

Publication Analysis

Top Keywords

particle models
24
nanoplastic particle
20
environmentally relevant
16
relevant nanoplastic
12
nanoplastics
9
environmental fate
8
fate nanoplastics
8
nanoplastic
6
particle
6
models
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!