Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the deformation behavior of soybean protein isolate (SPI) xerogels cross-linked with different transglutaminase (TGase) concentrations was investigated. The gel properties of TGase cross-linked SPI were analyzed by rheology and texture. Results showed that 0.4% TGase completely promoted the intermolecular cross-linking, SPI molecules had more binding sites and α-helix content and less irregular curl structure. The presence of 0.4% TGase enhanced the water binding ability and thermal stability of SPI xerogel, and its denaturation temperature was up to 181.50 °C. The corresponding texture characteristics showed that hardness and elasticity were significantly increased by 182.90% and 25.00%, respectively. Results showed that SPI containing 0.4% TGase had the best 3D (three-dimension) shape change after hydration. However, excessive TGase (1.0% w/v) led to excessive lysine covalent cross-linking, which increases the porosity of the gel surface, causing the disrupted gel network. The research provides insights and new ideas for food-processing technology called 4D (four-dimension) food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.135564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!