A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of ferroptosis by icariin treatment attenuates excessive ethanol consumption-induced atrial remodeling and susceptibility to atrial fibrillation, role of SIRT1. | LitMetric

AI Article Synopsis

  • * The study examined the effects of icariin, a potential protective agent, against ethanol-induced atrial damage, finding that icariin reversed harmful changes while its benefits were lost when combined with Erastin, a ferroptosis activator.
  • * Mechanistically, icariin improved atrial health by activating SIRT1 signaling, reducing oxidative stress and other indicators of ferroptosis, suggesting potential for icariin as a treatment for AF linked to ethanol exposure.

Article Abstract

Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-023-01814-8DOI Listing

Publication Analysis

Top Keywords

atrial
13
icariin treatment
12
atrial remodeling
12
effects icariin
12
ethanol-induced atrial
12
icariin
11
excessive ethanol
8
remodeling susceptibility
8
atrial fibrillation
8
sirt1 signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!