Dissimilar patterns of variants affecting genes involved in response to herbivory, including those leading to difference in VOC production, were identified in tomato lines with contrasting response to Tuta absoluta. Tuta absoluta is one of the most destructive insect pest affecting tomato production, causing important yield losses both in open field and greenhouse. The selection of tolerant varieties to T. absoluta is one of the sustainable approaches to control this invasive leafminer. In this study, the genomic diversity of two tomato varieties, one tolerant and the other susceptible to T. absoluta infestation was explored, allowing us to identify chromosome regions with highly dissimilar pattern. Genes affected by potential functional variants were involved in several processes, including response to herbivory and secondary metabolism. A metabolic analysis for volatile organic compounds (VOCs) was also performed, highlighting a difference in several classes of chemicals in the two genotypes. Taken together, these findings can aid tomato breeding programs aiming to develop tolerant plants to T. absoluta.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884263 | PMC |
http://dx.doi.org/10.1007/s00425-023-04073-8 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
is a significant agricultural pest primarily affecting Solanaceae plants, resulting in substantial economic losses in agriculture. Insect saliva is an intermediary between insects and plants, playing a crucial role in modulating host adaptability and plant defense. This study analyzed the adaptive differences of on four plants using the two-sex life table method.
View Article and Find Full Text PDFJ Invertebr Pathol
January 2025
Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK. Electronic address:
Plants employ various defense mechanisms to protect themselves from invaders such as microorganisms and herbivores. By recognizing these threats, plants can trigger a cascade of responses throughout their tissues, effectively priming their defenses and enhancing their resistance to future attacks. In this study, we examined the indirect effects of the entomopathogenic fungi Beauveria bassiana strain GHA and Metarhizium anisopliae strain F01 on tomato growth, expression of selected plant genes, production of secondary metabolites, and preference and performance of the tomato leafminer (Tuta absoluta).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box.2455, Riyadh, 11451, Saudi Arabia.
Tuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.
View Article and Find Full Text PDFInsects
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730000, China.
is a major pest, damaging tomato crops in many countries. Spinetoram, a novel insecticide, is increasingly used for the management of various insect pests. However, limited information is available on its lethal effects on .
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!