Background: Long-term sequelae of COVID-19 can result in reduced functionality of the central nervous system and substandard quality of life. Gaining insight into the recovery trajectory of admitted COVID-19 patients on their cognitive performance and global structural brain connectivity may allow a better understanding of the diseases' relevance.

Objectives: To assess whole-brain structural connectivity in former non-intensive-care unit (ICU)- and ICU-admitted COVID-19 survivors over 2 months following hospital discharge and correlate structural connectivity measures to cognitive performance.

Methods: Participants underwent Magnetic Resonance Imaging brain scans and a cognitive test battery after hospital discharge to evaluate structural connectivity and cognitive performance. Multilevel models were constructed for each graph measure and cognitive test, assessing the groups' influence, time since discharge, and interactions. Linear regression models estimated whether the graph measurements affected cognitive measures and whether they differed between ICU and non-ICU patients.

Results: Six former ICU and six non-ICU patients completed the study. Across the various graph measures, the characteristic path length decreased over time (β = 0.97, p = 0.006). We detected no group-level effects (β = 1.07, p = 0.442) nor interaction effects (β = 1.02, p = 0.220). Cognitive performance improved for both non-ICU and ICU COVID-19 survivors on four out of seven cognitive tests 2 months later (p < 0.05).

Conclusion: Adverse effects of COVID-19 on brain functioning and structure abate over time. These results should be supported by future research including larger sample sizes, matched control groups of healthy non-infected individuals, and more extended follow-up periods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883830PMC
http://dx.doi.org/10.1007/s00221-023-06545-5DOI Listing

Publication Analysis

Top Keywords

cognitive performance
16
covid-19 survivors
12
structural connectivity
12
cognitive
9
global structural
8
structural brain
8
brain connectivity
8
connectivity cognitive
8
hospital discharge
8
cognitive test
8

Similar Publications

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Objective: Neurocognitive underpinnings are implicated in the aetiology and maintenance of body dysmorphic disorder (BDD); however, inconsistent findings across a range of neurocognitive domains suggest that a comprehensive synthesis of the literature using a hierarchical framework of neurocognition is needed.

Methods: A final search across OVID Medline, PsycNET, Scopus and Web of Science databases was conducted on 20 June 2024 to identify research that examined performance on behavioural tasks of objective neurocognition in BDD. Risk of bias was assessed using the Newcastle-Ottawa Scale.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

Antidepressants exhibit a considerable variation in efficacy, and increasing evidence suggests that individual genetics contribute to antidepressant treatment response. Here, we combined data on antidepressant non-response measured using rating scales for depressive symptoms, questionnaires of treatment effect, and data from electronic health records, to increase statistical power to detect genomic loci associated with non-response to antidepressants in a total sample of 135,471 individuals prescribed antidepressants (25,255 non-responders and 110,216 responders). We performed genome-wide association meta-analyses, genetic correlation analyses, leave-one-out polygenic prediction, and bioinformatics analyses for genetically informed drug prioritization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!