Reduced Ice Adhesion Using Amphiphilic Poly(Ionic Liquid)-Based Surfaces.

ACS Appl Mater Interfaces

Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia.

Published: February 2023

AI Article Synopsis

  • Ice build-up on surfaces leads to major economic losses across various industries, prompting the need for effective anti-icing solutions.
  • Researchers developed amphiphilic poly(ionic liquid) coatings that show low ice adhesion strength, achieving a remarkable reduction to 13.3 kPa in a specific formulation.
  • The study identified self-lubrication from bound water as a key factor in reducing ice adhesion, paving the way for innovative, practical applications of these coatings.

Article Abstract

Ice build-up on solid surfaces causes significant economic losses for a range of industries. One solution to this problem is the development of coatings with low ice adhesion strength. Amphiphilic poly(ionic liquid) (PIL)-based surfaces have been recently reported for antifogging/antifrosting applications. However, they have possible anti-icing properties through lowering the ice adhesion strength that have yet to be reported. Herein, we designed well-defined triblock copolymers composed of a polydimethylsiloxane component coupled with PIL segments of poly([2 (methacryloyloxy)ethyl] trimethylammonium chloride) (PMETAC), which were subsequently UV-cured with an oligo(ethylene glycol) dimethacrylate (OEGDMA) cross-linker. The structure-property relationships of the resultant semi-interpenetrating polymer networks (SIPNs) were investigated by varying the counterion (i.e., trimethylammonium bis(trifluoromethanesulfonyl)imide (TFSI)) and the content of the PIL segments and cross-linker. An ice adhesion strength as low as 13.3 ± 8.6 kPa was observed for the coating containing 12.5 wt % of PMETAC segment and 5 wt % of OEGDMA, which is one of the lowest values reported so far for the amphiphilic coatings. Characterization of the coatings in terms of surface features, wettability, and hydration states have enabled the elucidation of different deicing mechanisms. Self-lubrication due to the existence of nonfreezable bound water led to the obtained low ice adhesion strength. This work offers a new approach for the exploration of PIL-based icephobic coatings for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c21500DOI Listing

Publication Analysis

Top Keywords

ice adhesion
20
adhesion strength
16
amphiphilic polyionic
8
low ice
8
pil segments
8
adhesion
5
ice
5
reduced ice
4
adhesion amphiphilic
4
polyionic liquid-based
4

Similar Publications

Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer.

View Article and Find Full Text PDF

Flexible Mushroom-Like Cross-Scale Surface with Extreme Pressure Resistance for Telecommunication Lines Anti-Icing/Deicing.

ACS Appl Mater Interfaces

January 2025

School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China.

Ice accretion caused by freezing rain or snowstorms is a common phenomenon in cold climates that seriously threatens the safety and reliability of telecommunication lines and other overhead networks. Various anti-icing strategies have been demonstrated through surface engineering to delay ice formation. However, existing anti-icing surfaces still encounter several challenges; for example, surfaces are prone to ice-pinning formation due to the impact of supercooled droplets, which leads to a loss of anti-icing effectiveness.

View Article and Find Full Text PDF

Capillary-Enhanced Biomimetic Adhesion on Icy Surfaces for High-Performance Antislip Shoe-Soles.

ACS Appl Mater Interfaces

January 2025

Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal.

The World Health Organization (WHO) reports 684,000 deaths/year due to slips and falls (SFs), with ∼38 million people requiring medical attention per annum. In particular, SFs on ice surfaces account for 45% of all SF incidents, costing over $100 billion globally in healthcare, intensive care, and insurance expenses. Current antislip solutions focus on hydrophobicity to repel interfacial fluids, aiming to maintain solid-to-solid contact.

View Article and Find Full Text PDF

A Critical Perspective on Photothermal De-Icing.

Adv Mater

December 2024

Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

To tackle the formidable challenges posed by extreme cold weather events, significant advancements have been made in developing functional surfaces capable of efficiently removing accreted ice. Nevertheless, many of these surfaces still require external energy input, such as electrical power, which raises concerns regarding their alignment with global sustainability goals. Over the past decade, increasing attention has been directed toward photothermal surface designs that harness solar energy-a resource available on Earth in quantities exceeding the total reserves of coal and oil combined.

View Article and Find Full Text PDF

The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!