Getting to the roots of N, P, and K uptake.

J Exp Bot

Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, Suite 101, Saskatoon, SK S7N 4L8, Canada.

Published: March 2023

The soil contributes to the main pool of essential mineral nutrients for plants. These mineral nutrients are critical elements for the building blocks of plant biomolecules, play fundamental roles in cell processes, and act in various enzymatic reactions. The roots are the main entry point for mineral nutrients used within the plant to grow, develop, and produce seeds. In this regard, a suite of plant nutrient transport systems, sensors, and signaling proteins function in acquiring mineral nutrients through the roots. Mineral nutrients from chemical fertilizers, composed mainly of nitrogen, phosphorus, and potassium (NPK), are added to agricultural land to maximize crop yields, worldwide. However, improving nutrient uptake and use within crops is critical for economically and environmentally sustainable agriculture. Therefore, we review the molecular basis for N, P, and K nutrient uptake into the roots. Remarkably, plants are responsive to heterogeneous nutrient distribution and align root growth and nutrient uptake with nutrient-rich patches. We highlight the relationship between nutrient distribution in the growth environment and root system architecture. We discuss the exchange of information between the root and shoot systems through the xylem and phloem, which coordinates nutrient uptake with photosynthesis. The size and structure of the root system, along with the abundance and activity of nutrient transporters, largely determine the nutrient acquisition rate. Lastly, we discuss connections between N, P, and K uptake and signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad035DOI Listing

Publication Analysis

Top Keywords

mineral nutrients
20
nutrient uptake
16
nutrient
9
nutrient distribution
8
root system
8
mineral
5
nutrients
5
uptake
5
roots
4
roots uptake
4

Similar Publications

Metal Mobilization from Thawing Permafrost Is an Emergent Risk to Water Resources.

ACS ES T Water

January 2025

Department of Geological Sciences, University of Saskatchewan, 114 Science Pl, Saskatoon, Saskatchewan, Canada, S7N 5E2.

Metals are ubiquitous in Earth's Critical Zone and play key roles in ecosystem function, human health, and water security. They are essential nutrients at low concentrations, yet some metals are toxic at a high dose. Permafrost thaw substantially alters all the physical and chemical processes governing metal mobility, including water movement and solute transport and (bio)geochemical interactions involving water, organic matter, minerals, and microbes.

View Article and Find Full Text PDF

Background: The growing demand for natural, health-promoting food products has led to increased interest in integrating nutrient-rich ingredients into everyday foods. The addition of leaves may increase nutrient profile, including essential amino acids, antioxidants, vitamins, and minerals in edible products.

Aim: The study aimed to optimize the addition of leaves in bread, noodles, and pasta and evaluate sensory attributes using a nine-point hedonic scale and nutritional analysis.

View Article and Find Full Text PDF

Importance: Infertility affects around 180 million people in the world and can be influenced by a number of nutritional factors.

Objective: The idea of a pretreatment optimization including beneficial weight loss, adequate physical activity, and good lifestyle habits could enhance fertility for many couples who want to conceive a baby.

Results: There are different aspects related to nutrition, such as obesity (affecting 23%-30% of reproductive-aged women), dietary patterns (type of diet, good or bad habits, and physical activity), nutrients (vitamins or minerals), hormones (adipokines, among others), and endocrine-disrupting chemicals (phytoestrogens and bisphenol A, among others) that have a clear impact on women's fertility.

View Article and Find Full Text PDF

Two different strategies for the distribution of macro- and trace elements can be observed in the terrestrial orchid Gymnadenia conopsea. Most trace elements are not translocated to the above-ground parts, whereas for macro-elements the trend was reversed, with the highest accumulation in the distal parts of the plants. Edaphic stress is one of the main factors affecting plant fitness, but it is still poorly understood, even in rare plants such as orchids.

View Article and Find Full Text PDF

Introduction: The objective of this study was to improve the economic value of the processed by-products of farmed miiuy croaker () by evaluating the nutrient composition and osteogenic activity of its bones. We prepared bone peptides (MMBP) and analyzed their osteogenic potential.

Methods: We assessed the osteogenic activity of MMBP by molecular docking, MC3T3-E1 cell proliferation assay and zebrafish growth model, and evaluated its effect on osteoporosis (OP) using a retinoic acid-induced osteoporosis rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!