Background: Colorectal cancer (CRC) is a disease with high morbidity and mortality rates globally. Long noncoding RNAs (lncRNAs) play a fundamental role in tumor progression, and increasing attention has been paid to their role in CRC. This study aimed to determine the function of lncRNA DICER1 antisense RNA 1 (DICER1-AS1) in CRC and confirm its potential regulatory mechanisms in CRC.

Methods: The publicly available dataset was used to assess DICER1-AS1 function and expression in CRC. RT-qPCR or western blot assays were performed to verify DICER1-AS1, miR-650, and mitogen-activated protein kinase 1 (MAPK1) expression in CRC cells or tissues. To determine the function of DICER1-AS1, we performed CCK-8, colony formation, transwell, cell cycle, and in vivo animal assays. Using RNA sequence analysis, luciferase reporter assays, and bioinformatics analysis, the connection between DICER1-AS1, MAPK1, and miR-650 was investigated.

Results: DICER1-AS1 was significantly upregulated in CRC tissue compared to normal colon tissue. High DICER1-AS1 expression suggested a poor prognosis in CRC patients. Functionally, upregulation of DICER1-AS1 effectively promoted CRC proliferation, migration, and invasion ex vivo and tumor progression in vivo. Mechanistically, DICER1-AS1 functions as a competitive endogenous RNA (ceRNA) that sponges miR-650 to upregulate MAPK1, promotes ERK1/2 phosphorylation, and sequentially activates the MAPK/ERK signaling pathway.

Conclusion: Our investigations found that upregulation of DICER1-AS1 activates the MAPK/ERK signaling pathway by sponging miR-650 to promote CRC progression, revealing a possible clinically significant biomarker and therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134332PMC
http://dx.doi.org/10.1002/cam4.5550DOI Listing

Publication Analysis

Top Keywords

mapk/erk signaling
12
dicer1-as1
10
crc
9
colorectal cancer
8
signaling pathway
8
pathway sponging
8
sponging mir-650
8
tumor progression
8
determine function
8
expression crc
8

Similar Publications

Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.

View Article and Find Full Text PDF

Objective: MiRNAs and lncRNAs are important regulators in the process of skin photoaging. In this study, we investigated the expression changes and interactions between miR4298 and lncKRTAP5-6-3 in chronically UVB-damaged human keratinocyte cell line (HaCaT) cells and explored miR4298-MAPK/ERK signaling pathway-Cathepsin D-lncKRTAP5-6-3 mechanisms in photoaging cells.

Methods: HaCaT cells were irradiated with 12 mJ/cm UVB once a day for 7 days.

View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts have been reported to play a central role in driving cancer progression, promoting metastasis, and conferring resistance to therapy in HNSCC.

Methods: Indirect and direct co-culture models of HPV-positive and HPV-negative HNSCC cells with fibroblasts were developed to study the effect of fibroblasts on cancer cells. ELISA was used to measure IL-6 secretion in these models.

View Article and Find Full Text PDF

Unlocking the mechanistic potential of for managing diabetic neuropathy and nephropathy.

J Tradit Complement Med

November 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. , a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition.

View Article and Find Full Text PDF

Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach.

Drug Chem Toxicol

January 2025

Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India.

Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!