A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revisiting chloroplast genomic landscape and annotation towards comparative chloroplast genomes of Rhamnaceae. | LitMetric

AI Article Synopsis

  • Massive parallel sequencing has advanced the study of plant relationships, particularly in the Rhamnaceae family, but the phylogenetic data remains sparse with only partial genomes available.
  • The chloroplast genome of Ventilago harmandiana was successfully assembled and validated, contributing to a more complete phylogenetic understanding of Rhamnaceae, confirming relationships among various species.
  • The study highlights issues in existing chloroplast genome annotations, including errors and inconsistencies, pointing to limitations in computational tools and reference genome accuracy.

Article Abstract

Background: Massive parallel sequencing technologies have enabled the elucidation of plant phylogenetic relationships from chloroplast genomes at a high pace. These include members of the family Rhamnaceae. The current Rhamnaceae phylogenetic tree is from 13 out of 24 Rhamnaceae chloroplast genomes, and only one chloroplast genome of the genus Ventilago is available. Hence, the phylogenetic relationships in Rhamnaceae remain incomplete, and more representative species are needed.

Results: The complete chloroplast genome of Ventilago harmandiana Pierre was outlined using a hybrid assembly of long- and short-read technologies. The accuracy and validity of the final genome were confirmed with PCR amplifications and investigation of coverage depth. Sanger sequencing was used to correct for differences in lengths and nucleotide bases between inverted repeats because of the homopolymers. The phylogenetic trees reconstructed using prevalent methods for phylogenetic inference were topologically similar. The clustering based on codon usage was congruent with the molecular phylogenetic tree. The groups of genera in each tribe were in accordance with tribal classification based on molecular markers. We resolved the phylogenetic relationships among six Hovenia species, three Rhamnus species, and two Ventilago species. Our reconstructed tree provides the most complete and reliable low-level taxonomy to date for the family Rhamnaceae. Similar to other higher plants, the RNA editing mostly resulted in converting serine to leucine. Besides, most genes were subjected to purifying selection. Annotation anomalies, including indel calling errors, unaligned open reading frames of the same gene, inconsistent prediction of intergenic regions, and misannotated genes, were identified in the published chloroplast genomes used in this study. These could be a result of the usual imperfections in computational tools, and/or existing errors in reference genomes. Importantly, these are points of concern with regards to utilizing published chloroplast genomes for comparative genomic analysis.

Conclusions: In summary, we successfully demonstrated the use of comprehensive genomic data, including DNA and amino acid sequences, to build a reliable and high-resolution phylogenetic tree for the family Rhamnaceae. Additionally, our study indicates that the revision of genome annotation before comparative genomic analyses is necessary to prevent the propagation of errors and complications in downstream analysis and interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883906PMC
http://dx.doi.org/10.1186/s12870-023-04074-5DOI Listing

Publication Analysis

Top Keywords

chloroplast genomes
20
phylogenetic relationships
12
family rhamnaceae
12
phylogenetic tree
12
annotation comparative
8
phylogenetic
8
chloroplast genome
8
published chloroplast
8
comparative genomic
8
chloroplast
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!