Gram-negative bacterial septicemia is mediated through binding of lipopolysaccharide (LPS) to mammalian toll-like receptor protein 4 (TLR4). TLR4 and its cognate protein, myeloid differentiation factor 2 (MD2) form a heterodimeric complex after binding LPS. This complex induces a cascade of reactions that results in increased proinflammatory cytokine gene expression, including TNFα, which leads to activation of innate immunity. In horses, the immune response to LPS varies widely. To determine if this variation is due to differences in TLR4 or MD2, DNA from 15 healthy adult horses with different TNFα dynamics after experimental intravenous LPS infusion was sequenced across exons of TLR4 and MD2. Haplotypes were constructed for both genes using all identified variants. Four haplotypes were observed for each gene. No significant associations were found between either TNFα baseline concentrations or response to LPS and haplotype; however, there was a significant association (P value = 0.0460) between the baseline TNFα concentration and one MD2 missense variant. Three-dimensional structures of the equine TLR4-MD2-LPS complex were built according to haplotype combinations observed in the study horses, and the implications of missense variants on LPS binding were modeled. Although the sample size was small, there was no evidence that variation in TLR4 or MD2 explains the variability in TNFα response observed after LPS exposure in horses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883502 | PMC |
http://dx.doi.org/10.1038/s41598-023-27956-y | DOI Listing |
This study delves into the role of lactic acid bacteria (LAB) surface proteins in cell adhesion and immunoregulation. Using fluorescence microscopy, we observed distinct adhesion patterns on various cell types. LAB surface proteins demonstrated concentration-dependent inhibition of Salmonella adhesion, with LAB69 exhibiting potent antagonistic effects.
View Article and Find Full Text PDFACS Omega
December 2024
Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico.
The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis.
View Article and Find Full Text PDFPhytother Res
December 2024
Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.
Acute lung injury (ALI), a systemic inflammatory response with high morbidity, lacks effective pharmacological therapies. Myeloid differentiation protein-2 (MD2) has emerged as a promising therapeutic target for ALI. Herein, we aimed to evaluate the ability of isoliquiritigenin (ISL), a natural flavonoid found in licorice as a novel MD2 inhibitor, to inhibit lipopolysaccharide (LPS)-induced ALI.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Pharmaceutical Science, School of Health Science and Technology, UPES, Dehradun, Uttarakhand, India.
Toll-like receptor 4 (TLR4) is an important mediator that activates bacterial inflammation through its signaling pathway. It binds lipopolysaccharide (LPS) in the presence of myeloid differentiation protein 2 (MD2) to dimerise the TLR4-MD2-LPS complex. The TLR4 mediated signaling pathway stimulates cytokine production in humans, initiating inflammatory responses.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.
Background And Purpose: Esophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition, ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However, the exact mechanism is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!