Targeting DNA methylation and demethylation in diabetic foot ulcers.

J Adv Res

Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia. Electronic address:

Published: December 2023

Background: Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes.

Aim Of Review: This work provides significant insights into the development of therapeutics for improving chronic diabetic wound healing, particularly by targeting and regulating DNA methylation and demethylation in DFU. Key scientific concepts of review: DNA methylation and demethylation play an important part in diabetic wound healing, via regulating corresponding signaling pathways in different breeds of cells, including macrophages, vascular endothelial cells and keratinocytes. In this review, we describe the four main phases of wound healing and their abnormality in diabetic patients. Furthermore, we provided an in-depth summary and discussion on how DNA methylation and demethylation regulate diabetic wound healing in different types of cells; and gave a brief summary on recent advances in applying cellular reprogramming techniques for improving diabetic wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703625PMC
http://dx.doi.org/10.1016/j.jare.2023.01.009DOI Listing

Publication Analysis

Top Keywords

wound healing
28
dna methylation
16
methylation demethylation
16
diabetic wound
16
diabetic foot
8
foot ulcers
8
poor wound
8
diabetic
7
wound
7
healing
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!