A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of laccase enzyme extraction from spent mushroom waste of Pleurotus florida through ANN-PSO modeling: An ecofriendly and economical approach. | LitMetric

The cardinal focus of this study is to optimize the best reaction conditions for maximizing laccase activity from spent mushroom waste (SMW) of Pleurotus florida. Optimization process parameters were studied by the modeling techniques, artificial neural networking (ANN) embedded in particle swarm optimization (PSO), and response surface model (RSM). The best topology of ANN-PSO architecture was obtained on 4-10-1. The R, IOA, MSE, and MAE values of the ANN model were obtained as 0.98785, 0.9939, 0.0023, and 0.0251 while, that of the RSM model were obtained as 0.74290, 0.9210, 0.0244, and 0.1110 respectively. The higher values of R, IOA, and lower values of MSE and MAE of the ANN-PSO model depict that ANN-PSO outperformed compared to RSM and also verified the effectiveness of the ANN-PSO model. The ANN-PSO model performance demonstrates the robustness of the technique in optimizing laccase activity in SMW of P. florida. The optimization results revealed that pH 4.5, time 3 h, solid: solution ratio 1:5, and ABTS concentration of 1 mM was optimal for achieving maximum laccase activity at temperature 30 °C. The enzymatic activity of crude laccase enzyme was obtained as 1.185 U ml without loss of enzyme activity. Additionally, crude laccase enzyme was 1.74 fold partially purified, and 83.54% of the enzyme was yielded. Out of all the independent process variables, ABTS and pH had an influence on laccase activity. Therefore, we anticipate that the findings of this investigation will reduce the ambiguity in maximizing laccase activity and ease the screening process. This study also highlights the comparative cost evaluation of crude laccase enzyme extracted from P. florida and commercial enzymes. There is a great potential for the utilization of the laccase enzyme extracted from SMW and using it for the degradation of recalcitrant micropollutants. Thus, SMW promises a cost-effective and sustainable approach leading towards circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115345DOI Listing

Publication Analysis

Top Keywords

laccase enzyme
20
laccase activity
20
ann-pso model
12
crude laccase
12
laccase
9
spent mushroom
8
mushroom waste
8
pleurotus florida
8
maximizing laccase
8
florida optimization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!