Collateral damage to healthy tissue, uneven heat distribution, inflammatory diseases, and tumor metastasis induction hinder the translation of high-temperature photothermal therapy (PTT) from bench to practical clinical applications. In this report, a multifunctional gold nanorod (GNR)-based nanosystem was designed by attaching siRNA against B7-H3 (B7-H3si), glucose oxidase (GOx), and hyaluronic acid (HA) for efficient low-temperature PTT. Herein, GOx can not only exhaust glucose to induce starvation therapy but also reduce the heat shock protein (HSP), realizing the ablation of tumors without damage to healthy tissues. Evidence shows that B7-H3, a type I transmembrane glycoprotein molecule, plays essential roles in growth, metastasis, and drug resistance. By initiating the downregulation of B7-H3 by siRNA, siRNA-GOx/GNR@HA NPs may promote the effectiveness of treatment. By targeting cluster of differentiation 44 (CD44) and depleting B7-H3 and HSPs sequentially, siRNA-GOx/GNR@HA NPs showed 12.9-fold higher lung distribution than siRNA-GOx/GNR NPs. Furthermore, 50% of A549-bearing mice in the siRNA-GOx/GNR NPs group survived over 50 days. Overall, this low-temperature phototherapeutic nanosystem provides an appropriate strategy for eliminating cancer with high treatment effectiveness and minimal systemic toxicity. STATEMENT OF SIGNIFICANCE: To realize efficient tumor ablation under mild low-temperature (42-45 ℃) and RNA interference simultaneously, here we developed a multifunctional gold nanorod (GNR)-based nanosystem (siRNA-GOx/GNR@HA NPs). This nanoplatform can significantly inhibit tumor cell proliferation and induce cell apoptosis by downregulation of HSP90α, HSP70, B7-H3, p-AKT, and p-ERK and upregulation of cleaved caspase-9 at mild low-temperature due to its superior tumor homing ability and the combined effect of photothermal effect, glucose deprivation-initiated tumor starvation, and B7-H3 gene silence effect. It is believed that this multifunctional low-temperature photothermal nanosystem with efficient and specific anticancer properties, shows a potential application in clinical tumor treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.01.036DOI Listing

Publication Analysis

Top Keywords

multifunctional gold
12
sirna-gox/gnr@ha nps
12
low-temperature photothermal
8
tumor starvation
8
rna interference
8
damage healthy
8
gold nanorod
8
nanorod gnr-based
8
gnr-based nanosystem
8
sirna-gox/gnr nps
8

Similar Publications

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures.

View Article and Find Full Text PDF

A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6.

Anal Chim Acta

January 2025

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.

Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Collagen as a bio-ink for 3D printing: a critical review.

J Mater Chem B

January 2025

Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.

The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!